Metamath Proof Explorer


Theorem clsocv

Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses clsocv.v V=BaseW
clsocv.o O=ocvW
clsocv.j J=TopOpenW
Assertion clsocv WCPreHilSVOclsJS=OS

Proof

Step Hyp Ref Expression
1 clsocv.v V=BaseW
2 clsocv.o O=ocvW
3 clsocv.j J=TopOpenW
4 cphngp WCPreHilWNrmGrp
5 ngptps WNrmGrpWTopSp
6 4 5 syl WCPreHilWTopSp
7 6 adantr WCPreHilSVWTopSp
8 1 3 istps WTopSpJTopOnV
9 7 8 sylib WCPreHilSVJTopOnV
10 topontop JTopOnVJTop
11 9 10 syl WCPreHilSVJTop
12 simpr WCPreHilSVSV
13 toponuni JTopOnVV=J
14 9 13 syl WCPreHilSVV=J
15 12 14 sseqtrd WCPreHilSVSJ
16 eqid J=J
17 16 sscls JTopSJSclsJS
18 11 15 17 syl2anc WCPreHilSVSclsJS
19 2 ocv2ss SclsJSOclsJSOS
20 18 19 syl WCPreHilSVOclsJSOS
21 16 clsss3 JTopSJclsJSJ
22 11 15 21 syl2anc WCPreHilSVclsJSJ
23 22 14 sseqtrrd WCPreHilSVclsJSV
24 23 adantr WCPreHilSVxOSclsJSV
25 1 2 ocvss OSV
26 25 a1i WCPreHilSVOSV
27 26 sselda WCPreHilSVxOSxV
28 df-ss clsJSVclsJSV=clsJS
29 24 28 sylib WCPreHilSVxOSclsJSV=clsJS
30 29 ineq1d WCPreHilSVxOSclsJSVy|x𝑖Wy=0ScalarW=clsJSy|x𝑖Wy=0ScalarW
31 dfrab3 yV|x𝑖Wy=0ScalarW=Vy|x𝑖Wy=0ScalarW
32 31 ineq2i clsJSyV|x𝑖Wy=0ScalarW=clsJSVy|x𝑖Wy=0ScalarW
33 inass clsJSVy|x𝑖Wy=0ScalarW=clsJSVy|x𝑖Wy=0ScalarW
34 32 33 eqtr4i clsJSyV|x𝑖Wy=0ScalarW=clsJSVy|x𝑖Wy=0ScalarW
35 dfrab3 yclsJS|x𝑖Wy=0ScalarW=clsJSy|x𝑖Wy=0ScalarW
36 30 34 35 3eqtr4g WCPreHilSVxOSclsJSyV|x𝑖Wy=0ScalarW=yclsJS|x𝑖Wy=0ScalarW
37 16 clscld JTopSJclsJSClsdJ
38 11 15 37 syl2anc WCPreHilSVclsJSClsdJ
39 38 adantr WCPreHilSVxOSclsJSClsdJ
40 fvex 0ScalarWV
41 eqid yVx𝑖Wy=yVx𝑖Wy
42 41 mptiniseg 0ScalarWVyVx𝑖Wy-10ScalarW=yV|x𝑖Wy=0ScalarW
43 40 42 ax-mp yVx𝑖Wy-10ScalarW=yV|x𝑖Wy=0ScalarW
44 eqid TopOpenfld=TopOpenfld
45 eqid 𝑖W=𝑖W
46 simpll WCPreHilSVxOSWCPreHil
47 9 adantr WCPreHilSVxOSJTopOnV
48 47 47 27 cnmptc WCPreHilSVxOSyVxJCnJ
49 47 cnmptid WCPreHilSVxOSyVyJCnJ
50 3 44 45 46 47 48 49 cnmpt1ip WCPreHilSVxOSyVx𝑖WyJCnTopOpenfld
51 44 cnfldhaus TopOpenfldHaus
52 cphclm WCPreHilWCMod
53 eqid ScalarW=ScalarW
54 53 clm0 WCMod0=0ScalarW
55 52 54 syl WCPreHil0=0ScalarW
56 55 ad2antrr WCPreHilSVxOS0=0ScalarW
57 0cn 0
58 56 57 eqeltrrdi WCPreHilSVxOS0ScalarW
59 unicntop =TopOpenfld
60 59 sncld TopOpenfldHaus0ScalarW0ScalarWClsdTopOpenfld
61 51 58 60 sylancr WCPreHilSVxOS0ScalarWClsdTopOpenfld
62 cnclima yVx𝑖WyJCnTopOpenfld0ScalarWClsdTopOpenfldyVx𝑖Wy-10ScalarWClsdJ
63 50 61 62 syl2anc WCPreHilSVxOSyVx𝑖Wy-10ScalarWClsdJ
64 43 63 eqeltrrid WCPreHilSVxOSyV|x𝑖Wy=0ScalarWClsdJ
65 incld clsJSClsdJyV|x𝑖Wy=0ScalarWClsdJclsJSyV|x𝑖Wy=0ScalarWClsdJ
66 39 64 65 syl2anc WCPreHilSVxOSclsJSyV|x𝑖Wy=0ScalarWClsdJ
67 36 66 eqeltrrd WCPreHilSVxOSyclsJS|x𝑖Wy=0ScalarWClsdJ
68 18 adantr WCPreHilSVxOSSclsJS
69 eqid 0ScalarW=0ScalarW
70 1 45 53 69 2 ocvi xOSySx𝑖Wy=0ScalarW
71 70 ralrimiva xOSySx𝑖Wy=0ScalarW
72 71 adantl WCPreHilSVxOSySx𝑖Wy=0ScalarW
73 ssrab SyclsJS|x𝑖Wy=0ScalarWSclsJSySx𝑖Wy=0ScalarW
74 68 72 73 sylanbrc WCPreHilSVxOSSyclsJS|x𝑖Wy=0ScalarW
75 16 clsss2 yclsJS|x𝑖Wy=0ScalarWClsdJSyclsJS|x𝑖Wy=0ScalarWclsJSyclsJS|x𝑖Wy=0ScalarW
76 67 74 75 syl2anc WCPreHilSVxOSclsJSyclsJS|x𝑖Wy=0ScalarW
77 ssrab2 yclsJS|x𝑖Wy=0ScalarWclsJS
78 77 a1i WCPreHilSVxOSyclsJS|x𝑖Wy=0ScalarWclsJS
79 76 78 eqssd WCPreHilSVxOSclsJS=yclsJS|x𝑖Wy=0ScalarW
80 rabid2 clsJS=yclsJS|x𝑖Wy=0ScalarWyclsJSx𝑖Wy=0ScalarW
81 79 80 sylib WCPreHilSVxOSyclsJSx𝑖Wy=0ScalarW
82 1 45 53 69 2 elocv xOclsJSclsJSVxVyclsJSx𝑖Wy=0ScalarW
83 24 27 81 82 syl3anbrc WCPreHilSVxOSxOclsJS
84 20 83 eqelssd WCPreHilSVOclsJS=OS