| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsocv.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clsocv.o | ⊢ 𝑂  =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | clsocv.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 4 |  | cphngp | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmGrp ) | 
						
							| 5 |  | ngptps | ⊢ ( 𝑊  ∈  NrmGrp  →  𝑊  ∈  TopSp ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  TopSp ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑊  ∈  TopSp ) | 
						
							| 8 | 1 3 | istps | ⊢ ( 𝑊  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝐽  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 10 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑉 )  →  𝐽  ∈  Top ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝐽  ∈  Top ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 13 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑉 )  →  𝑉  =  ∪  𝐽 ) | 
						
							| 14 | 9 13 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑉  =  ∪  𝐽 ) | 
						
							| 15 | 12 14 | sseqtrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  ∪  𝐽 ) | 
						
							| 16 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 17 | 16 | sscls | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 18 | 11 15 17 | syl2anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 19 | 2 | ocv2ss | ⊢ ( 𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ⊆  ( 𝑂 ‘ 𝑆 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ⊆  ( 𝑂 ‘ 𝑆 ) ) | 
						
							| 21 | 16 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∪  𝐽 ) | 
						
							| 22 | 11 15 21 | syl2anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∪  𝐽 ) | 
						
							| 23 | 22 14 | sseqtrrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 25 | 1 2 | ocvss | ⊢ ( 𝑂 ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑂 ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 27 | 26 | sselda | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 28 |  | dfss2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑉  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  𝑉 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 29 | 24 28 | sylib | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  𝑉 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 30 | 29 | ineq1d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  𝑉 )  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 31 |  | dfrab3 | ⊢ { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  =  ( 𝑉  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 32 | 31 | ineq2i | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  ( 𝑉  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 33 |  | inass | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  𝑉 )  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  ( 𝑉  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 34 | 32 33 | eqtr4i | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  𝑉 )  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 35 |  | dfrab3 | ⊢ { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 36 | 30 34 35 | 3eqtr4g | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 37 | 16 | clscld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 38 | 11 15 37 | syl2anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 40 |  | fvex | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  V | 
						
							| 41 |  | eqid | ⊢ ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 42 | 41 | mptiniseg | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  V  →  ( ◡ ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 43 | 40 42 | ax-mp | ⊢ ( ◡ ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | 
						
							| 44 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 45 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 46 |  | simpll | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝑊  ∈  ℂPreHil ) | 
						
							| 47 | 9 | adantr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 48 | 47 47 27 | cnmptc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( 𝑦  ∈  𝑉  ↦  𝑥 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 49 | 47 | cnmptid | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( 𝑦  ∈  𝑉  ↦  𝑦 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 50 | 3 44 45 46 47 48 49 | cnmpt1ip | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 51 | 44 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld )  ∈  Haus | 
						
							| 52 |  | cphclm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  ℂMod ) | 
						
							| 53 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 54 | 53 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 55 | 52 54 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 57 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 58 | 56 57 | eqeltrrdi | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 59 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 60 | 59 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Haus  ∧  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ℂ )  →  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 61 | 51 58 60 | sylancr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 62 |  | cnclima | ⊢ ( ( ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ∧  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )  →  ( ◡ ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 63 | 50 61 62 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ◡ ( 𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 64 | 43 63 | eqeltrrid | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 65 |  | incld | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∈  ( Clsd ‘ 𝐽 )  ∧  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 66 | 39 64 65 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∩  { 𝑦  ∈  𝑉  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 67 | 36 66 | eqeltrrd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 68 | 18 | adantr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 69 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 70 | 1 45 53 69 2 | ocvi | ⊢ ( ( 𝑥  ∈  ( 𝑂 ‘ 𝑆 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 71 | 70 | ralrimiva | ⊢ ( 𝑥  ∈  ( 𝑂 ‘ 𝑆 )  →  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 73 |  | ssrab | ⊢ ( 𝑆  ⊆  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ↔  ( 𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 74 | 68 72 73 | sylanbrc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝑆  ⊆  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 75 | 16 | clsss2 | ⊢ ( ( { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑆  ⊆  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 76 | 67 74 75 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 77 |  | ssrab2 | ⊢ { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) | 
						
							| 78 | 77 | a1i | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 79 | 76 78 | eqssd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 80 |  | rabid2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  { 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ↔  ∀ 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 81 | 79 80 | sylib | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 82 | 1 45 53 69 2 | elocv | ⊢ ( 𝑥  ∈  ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑉  ∧  𝑥  ∈  𝑉  ∧  ∀ 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 83 | 24 27 81 82 | syl3anbrc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  ( 𝑂 ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 84 | 20 83 | eqelssd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ( 𝑂 ‘ 𝑆 ) ) |