Metamath Proof Explorer


Theorem incld

Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion incld ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴𝐵 ) ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 intprg ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
2 prnzg ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → { 𝐴 , 𝐵 } ≠ ∅ )
3 prssi ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝐴 , 𝐵 } ⊆ ( Clsd ‘ 𝐽 ) )
4 intcld ( ( { 𝐴 , 𝐵 } ≠ ∅ ∧ { 𝐴 , 𝐵 } ⊆ ( Clsd ‘ 𝐽 ) ) → { 𝐴 , 𝐵 } ∈ ( Clsd ‘ 𝐽 ) )
5 2 3 4 syl2an2r ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝐴 , 𝐵 } ∈ ( Clsd ‘ 𝐽 ) )
6 1 5 eqeltrrd ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴𝐵 ) ∈ ( Clsd ‘ 𝐽 ) )