Metamath Proof Explorer


Theorem incld

Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion incld AClsdJBClsdJABClsdJ

Proof

Step Hyp Ref Expression
1 intprg AClsdJBClsdJAB=AB
2 prnzg AClsdJAB
3 prssi AClsdJBClsdJABClsdJ
4 intcld ABABClsdJABClsdJ
5 2 3 4 syl2an2r AClsdJBClsdJABClsdJ
6 1 5 eqeltrrd AClsdJBClsdJABClsdJ