| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsscph.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | cphsscph.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | cphphl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  PreHil ) | 
						
							| 4 | 1 2 | phlssphl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  PreHil ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  PreHil ) | 
						
							| 6 |  | cphnlm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmMod ) | 
						
							| 7 | 1 2 | lssnlm | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmMod ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmMod ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 | 9 10 | cphsca | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 1 9 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( Scalar ‘ 𝑋 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( Scalar ‘ 𝑋 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) | 
						
							| 18 | 12 17 | mpbid | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 5 8 18 | 3jca | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑋  ∈  PreHil  ∧  𝑋  ∈  NrmMod  ∧  ( Scalar ‘ 𝑋 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  ℂPreHil ) | 
						
							| 21 |  | elinel1 | ⊢ ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  →  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 23 |  | elinel2 | ⊢ ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  →  𝑞  ∈  ( 0 [,) +∞ ) ) | 
						
							| 24 |  | elrege0 | ⊢ ( 𝑞  ∈  ( 0 [,) +∞ )  ↔  ( 𝑞  ∈  ℝ  ∧  0  ≤  𝑞 ) ) | 
						
							| 25 | 24 | simplbi | ⊢ ( 𝑞  ∈  ( 0 [,) +∞ )  →  𝑞  ∈  ℝ ) | 
						
							| 26 | 23 25 | syl | ⊢ ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  →  𝑞  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  𝑞  ∈  ℝ ) | 
						
							| 28 | 24 | simprbi | ⊢ ( 𝑞  ∈  ( 0 [,) +∞ )  →  0  ≤  𝑞 ) | 
						
							| 29 | 23 28 | syl | ⊢ ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  →  0  ≤  𝑞 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  0  ≤  𝑞 ) | 
						
							| 31 | 22 27 30 | 3jca | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑞  ∈  ℝ  ∧  0  ≤  𝑞 ) ) | 
						
							| 32 | 9 10 | cphsqrtcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑞  ∈  ℝ  ∧  0  ≤  𝑞 ) )  →  ( √ ‘ 𝑞 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 33 | 20 31 32 | syl2anr | ⊢ ( ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  ∧  ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 ) )  →  ( √ ‘ 𝑞 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( ( √ ‘ 𝑞 )  =  𝑥  →  ( ( √ ‘ 𝑞 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  ( ( √ ‘ 𝑞 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  ∧  ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 ) )  →  ( ( √ ‘ 𝑞 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 37 | 33 36 | mpbid | ⊢ ( ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  ∧  ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( ( 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  ∧  ( √ ‘ 𝑞 )  =  𝑥 )  →  ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 39 | 38 | rexlimiva | ⊢ ( ∃ 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 )  =  𝑥  →  ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 40 |  | df-sqrt | ⊢ √  =  ( 𝑥  ∈  ℂ  ↦  ( ℩ 𝑐  ∈  ℂ ( ( 𝑐 ↑ 2 )  =  𝑥  ∧  0  ≤  ( ℜ ‘ 𝑐 )  ∧  ( i  ·  𝑐 )  ∉  ℝ+ ) ) ) | 
						
							| 41 | 40 | funmpt2 | ⊢ Fun  √ | 
						
							| 42 |  | fvelima | ⊢ ( ( Fun  √  ∧  𝑥  ∈  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) ) )  →  ∃ 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 )  =  𝑥 ) | 
						
							| 43 | 41 42 | mpan | ⊢ ( 𝑥  ∈  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  →  ∃ 𝑞  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 )  =  𝑥 ) | 
						
							| 44 | 39 43 | syl11 | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑥  ∈  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 45 | 44 | ssrdv | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 46 | 14 | ineq1d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) )  =  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) ) | 
						
							| 47 | 46 | imaeq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  =  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) ) ) | 
						
							| 48 | 47 14 | sseq12d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 50 | 45 49 | mpbid | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 51 |  | cphlmod | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LMod ) | 
						
							| 52 | 2 | lsssubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 53 | 51 52 | sylan | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 54 |  | eqid | ⊢ ( norm ‘ 𝑊 )  =  ( norm ‘ 𝑊 ) | 
						
							| 55 |  | eqid | ⊢ ( norm ‘ 𝑋 )  =  ( norm ‘ 𝑋 ) | 
						
							| 56 | 1 54 55 | subgnm | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  →  ( norm ‘ 𝑋 )  =  ( ( norm ‘ 𝑊 )  ↾  𝑈 ) ) | 
						
							| 57 | 53 56 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( norm ‘ 𝑋 )  =  ( ( norm ‘ 𝑊 )  ↾  𝑈 ) ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 59 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 60 | 58 59 54 | cphnmfval | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( norm ‘ 𝑊 )  =  ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( norm ‘ 𝑊 )  =  ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) | 
						
							| 62 | 1 59 | ressip | ⊢ ( 𝑈  ∈  𝑆  →  ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑋 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑋 ) ) | 
						
							| 64 | 63 | oveqd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 )  =  ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) )  =  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) | 
						
							| 66 | 65 | mpteq2dv | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) )  =  ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) | 
						
							| 67 | 61 66 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( norm ‘ 𝑊 )  =  ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) | 
						
							| 68 | 58 2 | lssss | ⊢ ( 𝑈  ∈  𝑆  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 70 |  | dfss | ⊢ ( 𝑈  ⊆  ( Base ‘ 𝑊 )  ↔  𝑈  =  ( 𝑈  ∩  ( Base ‘ 𝑊 ) ) ) | 
						
							| 71 | 69 70 | sylib | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  =  ( 𝑈  ∩  ( Base ‘ 𝑊 ) ) ) | 
						
							| 72 | 67 71 | reseq12d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( norm ‘ 𝑊 )  ↾  𝑈 )  =  ( ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) )  ↾  ( 𝑈  ∩  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 73 | 1 58 | ressbas | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑈  ∩  ( Base ‘ 𝑊 ) )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑈  ∩  ( Base ‘ 𝑊 ) )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 75 | 74 | reseq2d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) )  ↾  ( 𝑈  ∩  ( Base ‘ 𝑊 ) ) )  =  ( ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) )  ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 76 | 72 75 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( norm ‘ 𝑊 )  ↾  𝑈 )  =  ( ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) )  ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 77 | 1 58 | ressbasss | ⊢ ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 79 | 78 | resmptd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( 𝑏  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) )  ↾  ( Base ‘ 𝑋 ) )  =  ( 𝑏  ∈  ( Base ‘ 𝑋 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) | 
						
							| 80 | 57 76 79 | 3eqtrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  ( norm ‘ 𝑋 )  =  ( 𝑏  ∈  ( Base ‘ 𝑋 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) | 
						
							| 81 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 82 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑋 )  =  ( ·𝑖 ‘ 𝑋 ) | 
						
							| 83 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 84 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) | 
						
							| 85 | 81 82 55 83 84 | iscph | ⊢ ( 𝑋  ∈  ℂPreHil  ↔  ( ( 𝑋  ∈  PreHil  ∧  𝑋  ∈  NrmMod  ∧  ( Scalar ‘ 𝑋 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )  ∧  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( norm ‘ 𝑋 )  =  ( 𝑏  ∈  ( Base ‘ 𝑋 )  ↦  ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) ) | 
						
							| 86 | 19 50 80 85 | syl3anbrc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  ℂPreHil ) |