| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsscph.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
cphsscph.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 4 |
1 2
|
phlssphl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |
| 6 |
|
cphnlm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) |
| 7 |
1 2
|
lssnlm |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
9 10
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 13 |
1 9
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 18 |
12 17
|
mpbid |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 19 |
5 8 18
|
3jca |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 20 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ ℂPreHil ) |
| 21 |
|
elinel1 |
⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 |
|
elinel2 |
⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( 0 [,) +∞ ) ) |
| 24 |
|
elrege0 |
⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) ↔ ( 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) |
| 25 |
24
|
simplbi |
⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) → 𝑞 ∈ ℝ ) |
| 26 |
23 25
|
syl |
⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ℝ ) |
| 28 |
24
|
simprbi |
⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑞 ) |
| 29 |
23 28
|
syl |
⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 0 ≤ 𝑞 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 0 ≤ 𝑞 ) |
| 31 |
22 27 30
|
3jca |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) |
| 32 |
9 10
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 |
20 31 32
|
syl2anr |
⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 |
|
eleq1 |
⊢ ( ( √ ‘ 𝑞 ) = 𝑥 → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 37 |
33 36
|
mpbid |
⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 |
37
|
ex |
⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 39 |
38
|
rexlimiva |
⊢ ( ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 40 |
|
df-sqrt |
⊢ √ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑐 ∈ ℂ ( ( 𝑐 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑐 ) ∧ ( i · 𝑐 ) ∉ ℝ+ ) ) ) |
| 41 |
40
|
funmpt2 |
⊢ Fun √ |
| 42 |
|
fvelima |
⊢ ( ( Fun √ ∧ 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 ) |
| 43 |
41 42
|
mpan |
⊢ ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 ) |
| 44 |
39 43
|
syl11 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 |
44
|
ssrdv |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 |
14
|
ineq1d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) = ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) |
| 47 |
46
|
imaeq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ) |
| 48 |
47 14
|
sseq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 50 |
45 49
|
mpbid |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 51 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
| 52 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 53 |
51 52
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 54 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 55 |
|
eqid |
⊢ ( norm ‘ 𝑋 ) = ( norm ‘ 𝑋 ) |
| 56 |
1 54 55
|
subgnm |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) ) |
| 57 |
53 56
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 59 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 60 |
58 59 54
|
cphnmfval |
⊢ ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) |
| 62 |
1 59
|
ressip |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑋 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑋 ) ) |
| 64 |
63
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) = ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) = ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) |
| 66 |
65
|
mpteq2dv |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 67 |
61 66
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 68 |
58 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 70 |
|
dfss |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ↔ 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) |
| 71 |
69 70
|
sylib |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) |
| 72 |
67 71
|
reseq12d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 73 |
1 58
|
ressbas |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) ) |
| 75 |
74
|
reseq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) ) |
| 76 |
72 75
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) ) |
| 77 |
1 58
|
ressbasss |
⊢ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) |
| 78 |
77
|
a1i |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 79 |
78
|
resmptd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 80 |
57 76 79
|
3eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 81 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 82 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) |
| 83 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
| 84 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) |
| 85 |
81 82 55 83 84
|
iscph |
⊢ ( 𝑋 ∈ ℂPreHil ↔ ( ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) ) |
| 86 |
19 50 80 85
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |