| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsscph.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | cphsscph.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 4 | 1 2 | phlssphl |  |-  ( ( W e. PreHil /\ U e. S ) -> X e. PreHil ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( W e. CPreHil /\ U e. S ) -> X e. PreHil ) | 
						
							| 6 |  | cphnlm |  |-  ( W e. CPreHil -> W e. NrmMod ) | 
						
							| 7 | 1 2 | lssnlm |  |-  ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( W e. CPreHil /\ U e. S ) -> X e. NrmMod ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 11 | 9 10 | cphsca |  |-  ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 13 | 1 9 | resssca |  |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( U e. S -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( U e. S -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) | 
						
							| 16 | 13 15 | eqeq12d |  |-  ( U e. S -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) | 
						
							| 18 | 12 17 | mpbid |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) | 
						
							| 19 | 5 8 18 | 3jca |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) | 
						
							| 20 |  | simpl |  |-  ( ( W e. CPreHil /\ U e. S ) -> W e. CPreHil ) | 
						
							| 21 |  | elinel1 |  |-  ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 23 |  | elinel2 |  |-  ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( 0 [,) +oo ) ) | 
						
							| 24 |  | elrege0 |  |-  ( q e. ( 0 [,) +oo ) <-> ( q e. RR /\ 0 <_ q ) ) | 
						
							| 25 | 24 | simplbi |  |-  ( q e. ( 0 [,) +oo ) -> q e. RR ) | 
						
							| 26 | 23 25 | syl |  |-  ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. RR ) | 
						
							| 28 | 24 | simprbi |  |-  ( q e. ( 0 [,) +oo ) -> 0 <_ q ) | 
						
							| 29 | 23 28 | syl |  |-  ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> 0 <_ q ) | 
						
							| 30 | 29 | adantr |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> 0 <_ q ) | 
						
							| 31 | 22 27 30 | 3jca |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) | 
						
							| 32 | 9 10 | cphsqrtcl |  |-  ( ( W e. CPreHil /\ ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 33 | 20 31 32 | syl2anr |  |-  ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 34 |  | eleq1 |  |-  ( ( sqrt ` q ) = x -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 37 | 33 36 | mpbid |  |-  ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 39 | 38 | rexlimiva |  |-  ( E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 40 |  | df-sqrt |  |-  sqrt = ( x e. CC |-> ( iota_ c e. CC ( ( c ^ 2 ) = x /\ 0 <_ ( Re ` c ) /\ ( _i x. c ) e/ RR+ ) ) ) | 
						
							| 41 | 40 | funmpt2 |  |-  Fun sqrt | 
						
							| 42 |  | fvelima |  |-  ( ( Fun sqrt /\ x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) | 
						
							| 43 | 41 42 | mpan |  |-  ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) | 
						
							| 44 | 39 43 | syl11 |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 45 | 44 | ssrdv |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) ) | 
						
							| 46 | 14 | ineq1d |  |-  ( U e. S -> ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) = ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) | 
						
							| 47 | 46 | imaeq2d |  |-  ( U e. S -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) ) | 
						
							| 48 | 47 14 | sseq12d |  |-  ( U e. S -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) | 
						
							| 50 | 45 49 | mpbid |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) | 
						
							| 51 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 52 | 2 | lsssubg |  |-  ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) | 
						
							| 53 | 51 52 | sylan |  |-  ( ( W e. CPreHil /\ U e. S ) -> U e. ( SubGrp ` W ) ) | 
						
							| 54 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 55 |  | eqid |  |-  ( norm ` X ) = ( norm ` X ) | 
						
							| 56 | 1 54 55 | subgnm |  |-  ( U e. ( SubGrp ` W ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) | 
						
							| 57 | 53 56 | syl |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) | 
						
							| 58 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 59 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 60 | 58 59 54 | cphnmfval |  |-  ( W e. CPreHil -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) | 
						
							| 62 | 1 59 | ressip |  |-  ( U e. S -> ( .i ` W ) = ( .i ` X ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( .i ` W ) = ( .i ` X ) ) | 
						
							| 64 | 63 | oveqd |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( b ( .i ` W ) b ) = ( b ( .i ` X ) b ) ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( sqrt ` ( b ( .i ` W ) b ) ) = ( sqrt ` ( b ( .i ` X ) b ) ) ) | 
						
							| 66 | 65 | mpteq2dv |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) | 
						
							| 67 | 61 66 | eqtrd |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) | 
						
							| 68 | 58 2 | lssss |  |-  ( U e. S -> U C_ ( Base ` W ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( W e. CPreHil /\ U e. S ) -> U C_ ( Base ` W ) ) | 
						
							| 70 |  | dfss |  |-  ( U C_ ( Base ` W ) <-> U = ( U i^i ( Base ` W ) ) ) | 
						
							| 71 | 69 70 | sylib |  |-  ( ( W e. CPreHil /\ U e. S ) -> U = ( U i^i ( Base ` W ) ) ) | 
						
							| 72 | 67 71 | reseq12d |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) ) | 
						
							| 73 | 1 58 | ressbas |  |-  ( U e. S -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) | 
						
							| 75 | 74 | reseq2d |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) | 
						
							| 76 | 72 75 | eqtrd |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) | 
						
							| 77 | 1 58 | ressbasss |  |-  ( Base ` X ) C_ ( Base ` W ) | 
						
							| 78 | 77 | a1i |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( Base ` X ) C_ ( Base ` W ) ) | 
						
							| 79 | 78 | resmptd |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) | 
						
							| 80 | 57 76 79 | 3eqtrd |  |-  ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) | 
						
							| 81 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 82 |  | eqid |  |-  ( .i ` X ) = ( .i ` X ) | 
						
							| 83 |  | eqid |  |-  ( Scalar ` X ) = ( Scalar ` X ) | 
						
							| 84 |  | eqid |  |-  ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) | 
						
							| 85 | 81 82 55 83 84 | iscph |  |-  ( X e. CPreHil <-> ( ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) /\ ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) ) | 
						
							| 86 | 19 50 80 85 | syl3anbrc |  |-  ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |