Metamath Proof Explorer


Theorem cphsscph

Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphsscph.x X = W 𝑠 U
cphsscph.s S = LSubSp W
Assertion cphsscph W CPreHil U S X CPreHil

Proof

Step Hyp Ref Expression
1 cphsscph.x X = W 𝑠 U
2 cphsscph.s S = LSubSp W
3 cphphl W CPreHil W PreHil
4 1 2 phlssphl W PreHil U S X PreHil
5 3 4 sylan W CPreHil U S X PreHil
6 cphnlm W CPreHil W NrmMod
7 1 2 lssnlm W NrmMod U S X NrmMod
8 6 7 sylan W CPreHil U S X NrmMod
9 eqid Scalar W = Scalar W
10 eqid Base Scalar W = Base Scalar W
11 9 10 cphsca W CPreHil Scalar W = fld 𝑠 Base Scalar W
12 11 adantr W CPreHil U S Scalar W = fld 𝑠 Base Scalar W
13 1 9 resssca U S Scalar W = Scalar X
14 13 fveq2d U S Base Scalar W = Base Scalar X
15 14 oveq2d U S fld 𝑠 Base Scalar W = fld 𝑠 Base Scalar X
16 13 15 eqeq12d U S Scalar W = fld 𝑠 Base Scalar W Scalar X = fld 𝑠 Base Scalar X
17 16 adantl W CPreHil U S Scalar W = fld 𝑠 Base Scalar W Scalar X = fld 𝑠 Base Scalar X
18 12 17 mpbid W CPreHil U S Scalar X = fld 𝑠 Base Scalar X
19 5 8 18 3jca W CPreHil U S X PreHil X NrmMod Scalar X = fld 𝑠 Base Scalar X
20 simpl W CPreHil U S W CPreHil
21 elinel1 q Base Scalar W 0 +∞ q Base Scalar W
22 21 adantr q Base Scalar W 0 +∞ q = x q Base Scalar W
23 elinel2 q Base Scalar W 0 +∞ q 0 +∞
24 elrege0 q 0 +∞ q 0 q
25 24 simplbi q 0 +∞ q
26 23 25 syl q Base Scalar W 0 +∞ q
27 26 adantr q Base Scalar W 0 +∞ q = x q
28 24 simprbi q 0 +∞ 0 q
29 23 28 syl q Base Scalar W 0 +∞ 0 q
30 29 adantr q Base Scalar W 0 +∞ q = x 0 q
31 22 27 30 3jca q Base Scalar W 0 +∞ q = x q Base Scalar W q 0 q
32 9 10 cphsqrtcl W CPreHil q Base Scalar W q 0 q q Base Scalar W
33 20 31 32 syl2anr q Base Scalar W 0 +∞ q = x W CPreHil U S q Base Scalar W
34 eleq1 q = x q Base Scalar W x Base Scalar W
35 34 adantl q Base Scalar W 0 +∞ q = x q Base Scalar W x Base Scalar W
36 35 adantr q Base Scalar W 0 +∞ q = x W CPreHil U S q Base Scalar W x Base Scalar W
37 33 36 mpbid q Base Scalar W 0 +∞ q = x W CPreHil U S x Base Scalar W
38 37 ex q Base Scalar W 0 +∞ q = x W CPreHil U S x Base Scalar W
39 38 rexlimiva q Base Scalar W 0 +∞ q = x W CPreHil U S x Base Scalar W
40 df-sqrt = x ι c | c 2 = x 0 c i c +
41 40 funmpt2 Fun
42 fvelima Fun x Base Scalar W 0 +∞ q Base Scalar W 0 +∞ q = x
43 41 42 mpan x Base Scalar W 0 +∞ q Base Scalar W 0 +∞ q = x
44 39 43 syl11 W CPreHil U S x Base Scalar W 0 +∞ x Base Scalar W
45 44 ssrdv W CPreHil U S Base Scalar W 0 +∞ Base Scalar W
46 14 ineq1d U S Base Scalar W 0 +∞ = Base Scalar X 0 +∞
47 46 imaeq2d U S Base Scalar W 0 +∞ = Base Scalar X 0 +∞
48 47 14 sseq12d U S Base Scalar W 0 +∞ Base Scalar W Base Scalar X 0 +∞ Base Scalar X
49 48 adantl W CPreHil U S Base Scalar W 0 +∞ Base Scalar W Base Scalar X 0 +∞ Base Scalar X
50 45 49 mpbid W CPreHil U S Base Scalar X 0 +∞ Base Scalar X
51 cphlmod W CPreHil W LMod
52 2 lsssubg W LMod U S U SubGrp W
53 51 52 sylan W CPreHil U S U SubGrp W
54 eqid norm W = norm W
55 eqid norm X = norm X
56 1 54 55 subgnm U SubGrp W norm X = norm W U
57 53 56 syl W CPreHil U S norm X = norm W U
58 eqid Base W = Base W
59 eqid 𝑖 W = 𝑖 W
60 58 59 54 cphnmfval W CPreHil norm W = b Base W b 𝑖 W b
61 60 adantr W CPreHil U S norm W = b Base W b 𝑖 W b
62 1 59 ressip U S 𝑖 W = 𝑖 X
63 62 adantl W CPreHil U S 𝑖 W = 𝑖 X
64 63 oveqd W CPreHil U S b 𝑖 W b = b 𝑖 X b
65 64 fveq2d W CPreHil U S b 𝑖 W b = b 𝑖 X b
66 65 mpteq2dv W CPreHil U S b Base W b 𝑖 W b = b Base W b 𝑖 X b
67 61 66 eqtrd W CPreHil U S norm W = b Base W b 𝑖 X b
68 58 2 lssss U S U Base W
69 68 adantl W CPreHil U S U Base W
70 dfss U Base W U = U Base W
71 69 70 sylib W CPreHil U S U = U Base W
72 67 71 reseq12d W CPreHil U S norm W U = b Base W b 𝑖 X b U Base W
73 1 58 ressbas U S U Base W = Base X
74 73 adantl W CPreHil U S U Base W = Base X
75 74 reseq2d W CPreHil U S b Base W b 𝑖 X b U Base W = b Base W b 𝑖 X b Base X
76 72 75 eqtrd W CPreHil U S norm W U = b Base W b 𝑖 X b Base X
77 1 58 ressbasss Base X Base W
78 77 a1i W CPreHil U S Base X Base W
79 78 resmptd W CPreHil U S b Base W b 𝑖 X b Base X = b Base X b 𝑖 X b
80 57 76 79 3eqtrd W CPreHil U S norm X = b Base X b 𝑖 X b
81 eqid Base X = Base X
82 eqid 𝑖 X = 𝑖 X
83 eqid Scalar X = Scalar X
84 eqid Base Scalar X = Base Scalar X
85 81 82 55 83 84 iscph X CPreHil X PreHil X NrmMod Scalar X = fld 𝑠 Base Scalar X Base Scalar X 0 +∞ Base Scalar X norm X = b Base X b 𝑖 X b
86 19 50 80 85 syl3anbrc W CPreHil U S X CPreHil