Metamath Proof Explorer


Theorem cphnlm

Description: A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion cphnlm WCPreHilWNrmMod

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid 𝑖W=𝑖W
3 eqid normW=normW
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 1 2 3 4 5 iscph WCPreHilWPreHilWNrmModScalarW=fld𝑠BaseScalarWBaseScalarW0+∞BaseScalarWnormW=xBaseWx𝑖Wx
7 6 simp1bi WCPreHilWPreHilWNrmModScalarW=fld𝑠BaseScalarW
8 7 simp2d WCPreHilWNrmMod