| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssnlm.x |
|
| 2 |
|
lssnlm.s |
|
| 3 |
|
nlmngp |
|
| 4 |
|
nlmlmod |
|
| 5 |
2
|
lsssubg |
|
| 6 |
4 5
|
sylan |
|
| 7 |
1
|
subgngp |
|
| 8 |
3 6 7
|
syl2an2r |
|
| 9 |
1 2
|
lsslmod |
|
| 10 |
4 9
|
sylan |
|
| 11 |
|
eqid |
|
| 12 |
1 11
|
resssca |
|
| 13 |
12
|
adantl |
|
| 14 |
11
|
nlmnrg |
|
| 15 |
14
|
adantr |
|
| 16 |
13 15
|
eqeltrrd |
|
| 17 |
8 10 16
|
3jca |
|
| 18 |
|
simpll |
|
| 19 |
|
simprl |
|
| 20 |
13
|
adantr |
|
| 21 |
20
|
fveq2d |
|
| 22 |
19 21
|
eleqtrrd |
|
| 23 |
6
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
24
|
subgss |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
simprr |
|
| 28 |
1
|
subgbas |
|
| 29 |
23 28
|
syl |
|
| 30 |
27 29
|
eleqtrrd |
|
| 31 |
26 30
|
sseldd |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
24 32 33 11 34 35
|
nmvs |
|
| 37 |
18 22 31 36
|
syl3anc |
|
| 38 |
|
simplr |
|
| 39 |
1 33
|
ressvsca |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
oveqd |
|
| 42 |
41
|
fveq2d |
|
| 43 |
4
|
ad2antrr |
|
| 44 |
11 33 34 2
|
lssvscl |
|
| 45 |
43 38 22 30 44
|
syl22anc |
|
| 46 |
|
eqid |
|
| 47 |
1 32 46
|
subgnm2 |
|
| 48 |
6 45 47
|
syl2an2r |
|
| 49 |
42 48
|
eqtr3d |
|
| 50 |
20
|
eqcomd |
|
| 51 |
50
|
fveq2d |
|
| 52 |
51
|
fveq1d |
|
| 53 |
1 32 46
|
subgnm2 |
|
| 54 |
6 30 53
|
syl2an2r |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
37 49 55
|
3eqtr4d |
|
| 57 |
56
|
ralrimivva |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
|
eqid |
|
| 63 |
58 46 59 60 61 62
|
isnlm |
|
| 64 |
17 57 63
|
sylanbrc |
|