Metamath Proof Explorer


Theorem lssnvc

Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x X = W 𝑠 U
lssnlm.s S = LSubSp W
Assertion lssnvc W NrmVec U S X NrmVec

Proof

Step Hyp Ref Expression
1 lssnlm.x X = W 𝑠 U
2 lssnlm.s S = LSubSp W
3 nvcnlm W NrmVec W NrmMod
4 1 2 lssnlm W NrmMod U S X NrmMod
5 3 4 sylan W NrmVec U S X NrmMod
6 eqid Scalar W = Scalar W
7 1 6 resssca U S Scalar W = Scalar X
8 7 adantl W NrmVec U S Scalar W = Scalar X
9 nvclvec W NrmVec W LVec
10 6 lvecdrng W LVec Scalar W DivRing
11 9 10 syl W NrmVec Scalar W DivRing
12 11 adantr W NrmVec U S Scalar W DivRing
13 8 12 eqeltrrd W NrmVec U S Scalar X DivRing
14 eqid Scalar X = Scalar X
15 14 isnvc2 X NrmVec X NrmMod Scalar X DivRing
16 5 13 15 sylanbrc W NrmVec U S X NrmVec