Metamath Proof Explorer


Theorem lssnvc

Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x
|- X = ( W |`s U )
lssnlm.s
|- S = ( LSubSp ` W )
Assertion lssnvc
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec )

Proof

Step Hyp Ref Expression
1 lssnlm.x
 |-  X = ( W |`s U )
2 lssnlm.s
 |-  S = ( LSubSp ` W )
3 nvcnlm
 |-  ( W e. NrmVec -> W e. NrmMod )
4 1 2 lssnlm
 |-  ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod )
5 3 4 sylan
 |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmMod )
6 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
7 1 6 resssca
 |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) )
8 7 adantl
 |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) )
9 nvclvec
 |-  ( W e. NrmVec -> W e. LVec )
10 6 lvecdrng
 |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing )
11 9 10 syl
 |-  ( W e. NrmVec -> ( Scalar ` W ) e. DivRing )
12 11 adantr
 |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing )
13 8 12 eqeltrrd
 |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing )
14 eqid
 |-  ( Scalar ` X ) = ( Scalar ` X )
15 14 isnvc2
 |-  ( X e. NrmVec <-> ( X e. NrmMod /\ ( Scalar ` X ) e. DivRing ) )
16 5 13 15 sylanbrc
 |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec )