| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssnlm.x |
|- X = ( W |`s U ) |
| 2 |
|
lssnlm.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
nvcnlm |
|- ( W e. NrmVec -> W e. NrmMod ) |
| 4 |
1 2
|
lssnlm |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
| 5 |
3 4
|
sylan |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmMod ) |
| 6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 7 |
1 6
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 8 |
7
|
adantl |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 |
|
nvclvec |
|- ( W e. NrmVec -> W e. LVec ) |
| 10 |
6
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 11 |
9 10
|
syl |
|- ( W e. NrmVec -> ( Scalar ` W ) e. DivRing ) |
| 12 |
11
|
adantr |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing ) |
| 13 |
8 12
|
eqeltrrd |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing ) |
| 14 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
| 15 |
14
|
isnvc2 |
|- ( X e. NrmVec <-> ( X e. NrmMod /\ ( Scalar ` X ) e. DivRing ) ) |
| 16 |
5 13 15
|
sylanbrc |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |