| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssnlm.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
lssnlm.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
nvcnlm |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |
| 4 |
1 2
|
lssnlm |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
1 6
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 9 |
|
nvclvec |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LVec ) |
| 10 |
6
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 13 |
8 12
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ DivRing ) |
| 14 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
| 15 |
14
|
isnvc2 |
⊢ ( 𝑋 ∈ NrmVec ↔ ( 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) ∈ DivRing ) ) |
| 16 |
5 13 15
|
sylanbrc |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |