Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isnvc2.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | isnvc2 | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvc2.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | isnvc | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ) | |
| 3 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 4 | 1 | islvec | ⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing ) ) |
| 5 | 4 | baib | ⊢ ( 𝑊 ∈ LMod → ( 𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing ) ) |
| 7 | 6 | pm5.32i | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) ) |
| 8 | 2 7 | bitri | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) ) |