| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssnlm.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
lssnlm.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 4 |
|
nlmlmod |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
| 5 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 7 |
1
|
subgngp |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑋 ∈ NrmGrp ) |
| 8 |
3 6 7
|
syl2an2r |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 9 |
1 2
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 10 |
4 9
|
sylan |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 12 |
1 11
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 |
11
|
nlmnrg |
⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 16 |
13 15
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ NrmRing ) |
| 17 |
8 10 16
|
3jca |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ NrmRing ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ NrmMod ) |
| 19 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 20 |
13
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 22 |
19 21
|
eleqtrrd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 |
6
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 25 |
24
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑋 ) ) |
| 28 |
1
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 29 |
23 28
|
syl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 30 |
27 29
|
eleqtrrd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 31 |
26 30
|
sseldd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 32 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 33 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 34 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 35 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) |
| 36 |
24 32 33 11 34 35
|
nmvs |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 37 |
18 22 31 36
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ∈ 𝑆 ) |
| 39 |
1 33
|
ressvsca |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 41 |
40
|
oveqd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) ) |
| 43 |
4
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
| 44 |
11 33 34 2
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 45 |
43 38 22 30 44
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 46 |
|
eqid |
⊢ ( norm ‘ 𝑋 ) = ( norm ‘ 𝑋 ) |
| 47 |
1 32 46
|
subgnm2 |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 48 |
6 45 47
|
syl2an2r |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 49 |
42 48
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 50 |
20
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 51 |
50
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( norm ‘ ( Scalar ‘ 𝑋 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 52 |
51
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) ) |
| 53 |
1 32 46
|
subgnm2 |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑦 ∈ 𝑈 ) → ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) |
| 54 |
6 30 53
|
syl2an2r |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) |
| 55 |
52 54
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 56 |
37 49 55
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) |
| 57 |
56
|
ralrimivva |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 59 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) |
| 60 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
| 61 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) |
| 62 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑋 ) ) = ( norm ‘ ( Scalar ‘ 𝑋 ) ) |
| 63 |
58 46 59 60 61 62
|
isnlm |
⊢ ( 𝑋 ∈ NrmMod ↔ ( ( 𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 64 |
17 57 63
|
sylanbrc |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |