| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt1ip.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 2 |
|
cnmpt1ip.c |
⊢ 𝐶 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
cnmpt1ip.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 4 |
|
cnmpt1ip.r |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
| 5 |
|
cnmpt1ip.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
|
cnmpt1ip.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 7 |
|
cnmpt1ip.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 8 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
| 9 |
|
ngptps |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) |
| 10 |
4 8 9
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 12 |
11 1
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 13 |
10 12
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 14 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) |
| 15 |
5 13 6 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) |
| 16 |
15
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 17 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) |
| 18 |
5 13 7 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) |
| 19 |
18
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( ·if ‘ 𝑊 ) = ( ·if ‘ 𝑊 ) |
| 21 |
11 3 20
|
ipfval |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
| 22 |
16 19 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
| 23 |
22
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 , 𝐵 ) ) ) |
| 24 |
20 1 2
|
ipcn |
⊢ ( 𝑊 ∈ ℂPreHil → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
| 26 |
5 6 7 25
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) ∈ ( 𝐾 Cn 𝐶 ) ) |
| 27 |
23 26
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( 𝐾 Cn 𝐶 ) ) |