| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt1ip.j |
|- J = ( TopOpen ` W ) |
| 2 |
|
cnmpt1ip.c |
|- C = ( TopOpen ` CCfld ) |
| 3 |
|
cnmpt1ip.h |
|- ., = ( .i ` W ) |
| 4 |
|
cnmpt1ip.r |
|- ( ph -> W e. CPreHil ) |
| 5 |
|
cnmpt1ip.k |
|- ( ph -> K e. ( TopOn ` X ) ) |
| 6 |
|
cnmpt1ip.a |
|- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
| 7 |
|
cnmpt1ip.b |
|- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
| 8 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
| 9 |
|
ngptps |
|- ( W e. NrmGrp -> W e. TopSp ) |
| 10 |
4 8 9
|
3syl |
|- ( ph -> W e. TopSp ) |
| 11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 12 |
11 1
|
istps |
|- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
| 13 |
10 12
|
sylib |
|- ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) |
| 14 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
| 15 |
5 13 6 14
|
syl3anc |
|- ( ph -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
| 16 |
15
|
fvmptelcdm |
|- ( ( ph /\ x e. X ) -> A e. ( Base ` W ) ) |
| 17 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
| 18 |
5 13 7 17
|
syl3anc |
|- ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
| 19 |
18
|
fvmptelcdm |
|- ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) |
| 20 |
|
eqid |
|- ( .if ` W ) = ( .if ` W ) |
| 21 |
11 3 20
|
ipfval |
|- ( ( A e. ( Base ` W ) /\ B e. ( Base ` W ) ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
| 22 |
16 19 21
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
| 23 |
22
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) = ( x e. X |-> ( A ., B ) ) ) |
| 24 |
20 1 2
|
ipcn |
|- ( W e. CPreHil -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
| 25 |
4 24
|
syl |
|- ( ph -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
| 26 |
5 6 7 25
|
cnmpt12f |
|- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) e. ( K Cn C ) ) |
| 27 |
23 26
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( A ., B ) ) e. ( K Cn C ) ) |