| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipcn.f |  |-  ., = ( .if ` W ) | 
						
							| 2 |  | ipcn.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | ipcn.k |  |-  K = ( TopOpen ` CCfld ) | 
						
							| 4 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 5 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 8 | 5 1 6 7 | phlipf |  |-  ( W e. PreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) | 
						
							| 10 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 11 | 6 7 | clmsscn |  |-  ( W e. CMod -> ( Base ` ( Scalar ` W ) ) C_ CC ) | 
						
							| 12 | 10 11 | syl |  |-  ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) | 
						
							| 13 | 9 12 | fssd |  |-  ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) | 
						
							| 14 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 15 |  | eqid |  |-  ( dist ` W ) = ( dist ` W ) | 
						
							| 16 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 17 |  | eqid |  |-  ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) | 
						
							| 18 |  | eqid |  |-  ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) | 
						
							| 19 |  | simpll |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. CPreHil ) | 
						
							| 20 |  | simplrl |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` W ) ) | 
						
							| 21 |  | simplrr |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) | 
						
							| 23 | 5 14 15 16 17 18 19 20 21 22 | ipcnlem1 |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) | 
						
							| 25 |  | simplrl |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) | 
						
							| 26 |  | simprl |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) | 
						
							| 27 | 25 26 | ovresd |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) = ( x ( dist ` W ) z ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s <-> ( x ( dist ` W ) z ) < s ) ) | 
						
							| 29 |  | simplrr |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) | 
						
							| 30 |  | simprr |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) | 
						
							| 31 | 29 30 | ovresd |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) | 
						
							| 32 | 31 | breq1d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) | 
						
							| 33 | 28 32 | anbi12d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) | 
						
							| 34 | 13 | ad2antrr |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) | 
						
							| 35 | 34 25 29 | fovcdmd |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) e. CC ) | 
						
							| 36 | 34 26 30 | fovcdmd |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) e. CC ) | 
						
							| 37 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 38 | 37 | cnmetdval |  |-  ( ( ( x ., y ) e. CC /\ ( z ., w ) e. CC ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) | 
						
							| 39 | 35 36 38 | syl2anc |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) | 
						
							| 40 | 5 14 1 | ipfval |  |-  ( ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) | 
						
							| 41 | 25 29 40 | syl2anc |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) | 
						
							| 42 | 5 14 1 | ipfval |  |-  ( ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) | 
						
							| 44 | 41 43 | oveq12d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) - ( z ., w ) ) = ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( abs ` ( ( x ., y ) - ( z ., w ) ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) | 
						
							| 46 | 39 45 | eqtrd |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) | 
						
							| 47 | 46 | breq1d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r <-> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) | 
						
							| 48 | 33 47 | imbi12d |  |-  ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) | 
						
							| 49 | 48 | 2ralbidva |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) | 
						
							| 50 | 49 | rexbidv |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) | 
						
							| 51 | 50 | ralbidv |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) | 
						
							| 52 | 24 51 | mpbird |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) | 
						
							| 53 | 52 | ralrimivva |  |-  ( W e. CPreHil -> A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) | 
						
							| 54 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 55 |  | ngpms |  |-  ( W e. NrmGrp -> W e. MetSp ) | 
						
							| 56 | 54 55 | syl |  |-  ( W e. CPreHil -> W e. MetSp ) | 
						
							| 57 |  | msxms |  |-  ( W e. MetSp -> W e. *MetSp ) | 
						
							| 58 | 56 57 | syl |  |-  ( W e. CPreHil -> W e. *MetSp ) | 
						
							| 59 |  | eqid |  |-  ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) | 
						
							| 60 | 5 59 | xmsxmet |  |-  ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) | 
						
							| 61 | 58 60 | syl |  |-  ( W e. CPreHil -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) | 
						
							| 62 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 63 | 62 | a1i |  |-  ( W e. CPreHil -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 64 |  | eqid |  |-  ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) | 
						
							| 65 | 3 | cnfldtopn |  |-  K = ( MetOpen ` ( abs o. - ) ) | 
						
							| 66 | 64 64 65 | txmetcn |  |-  ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( abs o. - ) e. ( *Met ` CC ) ) -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) | 
						
							| 67 | 61 61 63 66 | syl3anc |  |-  ( W e. CPreHil -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) | 
						
							| 68 | 13 53 67 | mpbir2and |  |-  ( W e. CPreHil -> ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) | 
						
							| 69 | 2 5 59 | mstopn |  |-  ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) | 
						
							| 70 | 56 69 | syl |  |-  ( W e. CPreHil -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) | 
						
							| 71 | 70 70 | oveq12d |  |-  ( W e. CPreHil -> ( J tX J ) = ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( W e. CPreHil -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) | 
						
							| 73 | 68 72 | eleqtrrd |  |-  ( W e. CPreHil -> ., e. ( ( J tX J ) Cn K ) ) |