| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipcn.f |
⊢ , = ( ·if ‘ 𝑊 ) |
| 2 |
|
ipcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
ipcn.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 4 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 8 |
5 1 6 7
|
phlipf |
⊢ ( 𝑊 ∈ PreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 11 |
6 7
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 13 |
9 12
|
fssd |
⊢ ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ) |
| 14 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 17 |
|
eqid |
⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) |
| 18 |
|
eqid |
⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil ) |
| 20 |
|
simplrl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 21 |
|
simplrr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
| 23 |
5 14 15 16 17 18 19 20 21 22
|
ipcnlem1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 25 |
|
simplrl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 27 |
25 26
|
ovresd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) ) |
| 28 |
27
|
breq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ) ) |
| 29 |
|
simplrr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 30 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑤 ∈ ( Base ‘ 𝑊 ) ) |
| 31 |
29 30
|
ovresd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) = ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) ) |
| 32 |
31
|
breq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ↔ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) |
| 33 |
28 32
|
anbi12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) ↔ ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) ) |
| 34 |
13
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ) |
| 35 |
34 25 29
|
fovcdmd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) ∈ ℂ ) |
| 36 |
34 26 30
|
fovcdmd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) ∈ ℂ ) |
| 37 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 38 |
37
|
cnmetdval |
⊢ ( ( ( 𝑥 , 𝑦 ) ∈ ℂ ∧ ( 𝑧 , 𝑤 ) ∈ ℂ ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) ) |
| 39 |
35 36 38
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) ) |
| 40 |
5 14 1
|
ipfval |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 41 |
25 29 40
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 42 |
5 14 1
|
ipfval |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) |
| 44 |
41 43
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) = ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 46 |
39 45
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 47 |
46
|
breq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ↔ ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 48 |
33 47
|
imbi12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 49 |
48
|
2ralbidva |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 50 |
49
|
rexbidv |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 51 |
50
|
ralbidv |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 52 |
24 51
|
mpbird |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) |
| 53 |
52
|
ralrimivva |
⊢ ( 𝑊 ∈ ℂPreHil → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) |
| 54 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
| 55 |
|
ngpms |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) |
| 56 |
54 55
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp ) |
| 57 |
|
msxms |
⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) |
| 58 |
56 57
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp ) |
| 59 |
|
eqid |
⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
| 60 |
5 59
|
xmsxmet |
⊢ ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 61 |
58 60
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 62 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 63 |
62
|
a1i |
⊢ ( 𝑊 ∈ ℂPreHil → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 64 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 65 |
3
|
cnfldtopn |
⊢ 𝐾 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 66 |
64 64 65
|
txmetcn |
⊢ ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) ) |
| 67 |
61 61 63 66
|
syl3anc |
⊢ ( 𝑊 ∈ ℂPreHil → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) ) |
| 68 |
13 53 67
|
mpbir2and |
⊢ ( 𝑊 ∈ ℂPreHil → , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ) |
| 69 |
2 5 59
|
mstopn |
⊢ ( 𝑊 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 70 |
56 69
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 71 |
70 70
|
oveq12d |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐽 ×t 𝐽 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝑊 ∈ ℂPreHil → ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ) |
| 73 |
68 72
|
eleqtrrd |
⊢ ( 𝑊 ∈ ℂPreHil → , ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |