| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjth2.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 2 |  | pjth2.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | pjth2.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  𝐿 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 8 | 5 6 7 1 2 | pjth | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 9 |  | hlphl | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  PreHil ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 11 | 5 2 7 6 3 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑈  ∈  dom  𝐾  ↔  ( 𝑈  ∈  𝐿  ∧  ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑈  ∈  dom  𝐾  ↔  ( 𝑈  ∈  𝐿  ∧  ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 4 8 12 | mpbir2and | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  dom  𝐾 ) |