Metamath Proof Explorer


Theorem pjth2

Description: Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses pjth2.j 𝐽 = ( TopOpen ‘ 𝑊 )
pjth2.l 𝐿 = ( LSubSp ‘ 𝑊 )
pjth2.k 𝐾 = ( proj ‘ 𝑊 )
Assertion pjth2 ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom 𝐾 )

Proof

Step Hyp Ref Expression
1 pjth2.j 𝐽 = ( TopOpen ‘ 𝑊 )
2 pjth2.l 𝐿 = ( LSubSp ‘ 𝑊 )
3 pjth2.k 𝐾 = ( proj ‘ 𝑊 )
4 simp2 ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈𝐿 )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
7 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
8 5 6 7 1 2 pjth ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) )
9 hlphl ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil )
10 9 3ad2ant1 ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil )
11 5 2 7 6 3 pjdm2 ( 𝑊 ∈ PreHil → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) )
12 10 11 syl ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) )
13 4 8 12 mpbir2and ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom 𝐾 )