| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjth2.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 2 |
|
pjth2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
pjth2.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 4 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ 𝐿 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 8 |
5 6 7 1 2
|
pjth |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) |
| 9 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil ) |
| 11 |
5 2 7 6 3
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈 ∈ 𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈 ∈ 𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 13 |
4 8 12
|
mpbir2and |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom 𝐾 ) |