Step |
Hyp |
Ref |
Expression |
1 |
|
pjth2.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
2 |
|
pjth2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
3 |
|
pjth2.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
4 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ 𝐿 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
8 |
5 6 7 1 2
|
pjth |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) |
9 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil ) |
11 |
5 2 7 6 3
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈 ∈ 𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∈ dom 𝐾 ↔ ( 𝑈 ∈ 𝐿 ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑈 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
13 |
4 8 12
|
mpbir2and |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom 𝐾 ) |