| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjth2.j |  |-  J = ( TopOpen ` W ) | 
						
							| 2 |  | pjth2.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | pjth2.k |  |-  K = ( proj ` W ) | 
						
							| 4 |  | simp2 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. L ) | 
						
							| 5 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 6 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 7 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 8 | 5 6 7 1 2 | pjth |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) | 
						
							| 9 |  | hlphl |  |-  ( W e. CHil -> W e. PreHil ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) | 
						
							| 11 | 5 2 7 6 3 | pjdm2 |  |-  ( W e. PreHil -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) ) | 
						
							| 13 | 4 8 12 | mpbir2and |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom K ) |