Metamath Proof Explorer


Theorem pjth2

Description: Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses pjth2.j
|- J = ( TopOpen ` W )
pjth2.l
|- L = ( LSubSp ` W )
pjth2.k
|- K = ( proj ` W )
Assertion pjth2
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom K )

Proof

Step Hyp Ref Expression
1 pjth2.j
 |-  J = ( TopOpen ` W )
2 pjth2.l
 |-  L = ( LSubSp ` W )
3 pjth2.k
 |-  K = ( proj ` W )
4 simp2
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. L )
5 eqid
 |-  ( Base ` W ) = ( Base ` W )
6 eqid
 |-  ( LSSum ` W ) = ( LSSum ` W )
7 eqid
 |-  ( ocv ` W ) = ( ocv ` W )
8 5 6 7 1 2 pjth
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) )
9 hlphl
 |-  ( W e. CHil -> W e. PreHil )
10 9 3ad2ant1
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil )
11 5 2 7 6 3 pjdm2
 |-  ( W e. PreHil -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) )
12 10 11 syl
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) )
13 4 8 12 mpbir2and
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom K )