| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjth2.j |
|- J = ( TopOpen ` W ) |
| 2 |
|
pjth2.l |
|- L = ( LSubSp ` W ) |
| 3 |
|
pjth2.k |
|- K = ( proj ` W ) |
| 4 |
|
simp2 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. L ) |
| 5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 6 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 7 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
| 8 |
5 6 7 1 2
|
pjth |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) |
| 9 |
|
hlphl |
|- ( W e. CHil -> W e. PreHil ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) |
| 11 |
5 2 7 6 3
|
pjdm2 |
|- ( W e. PreHil -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U e. dom K <-> ( U e. L /\ ( U ( LSSum ` W ) ( ( ocv ` W ) ` U ) ) = ( Base ` W ) ) ) ) |
| 13 |
4 8 12
|
mpbir2and |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom K ) |