Step |
Hyp |
Ref |
Expression |
1 |
|
pjth.v |
|- V = ( Base ` W ) |
2 |
|
pjth.s |
|- .(+) = ( LSSum ` W ) |
3 |
|
pjth.o |
|- O = ( ocv ` W ) |
4 |
|
pjth.j |
|- J = ( TopOpen ` W ) |
5 |
|
pjth.l |
|- L = ( LSubSp ` W ) |
6 |
|
hlphl |
|- ( W e. CHil -> W e. PreHil ) |
7 |
6
|
3ad2ant1 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) |
8 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
9 |
7 8
|
syl |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. LMod ) |
10 |
|
simp2 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. L ) |
11 |
1 5
|
lssss |
|- ( U e. L -> U C_ V ) |
12 |
11
|
3ad2ant2 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U C_ V ) |
13 |
1 3 5
|
ocvlss |
|- ( ( W e. PreHil /\ U C_ V ) -> ( O ` U ) e. L ) |
14 |
7 12 13
|
syl2anc |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( O ` U ) e. L ) |
15 |
5 2
|
lsmcl |
|- ( ( W e. LMod /\ U e. L /\ ( O ` U ) e. L ) -> ( U .(+) ( O ` U ) ) e. L ) |
16 |
9 10 14 15
|
syl3anc |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) e. L ) |
17 |
1 5
|
lssss |
|- ( ( U .(+) ( O ` U ) ) e. L -> ( U .(+) ( O ` U ) ) C_ V ) |
18 |
16 17
|
syl |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) C_ V ) |
19 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
20 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
21 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
22 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
23 |
|
simpl1 |
|- ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> W e. CHil ) |
24 |
|
simpl2 |
|- ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> U e. L ) |
25 |
|
simpr |
|- ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> x e. V ) |
26 |
|
simpl3 |
|- ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> U e. ( Clsd ` J ) ) |
27 |
1 19 20 21 22 5 23 24 25 4 2 3 26
|
pjthlem2 |
|- ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> x e. ( U .(+) ( O ` U ) ) ) |
28 |
18 27
|
eqelssd |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) = V ) |