| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjth.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | pjth.s |  |-  .(+) = ( LSSum ` W ) | 
						
							| 3 |  | pjth.o |  |-  O = ( ocv ` W ) | 
						
							| 4 |  | pjth.j |  |-  J = ( TopOpen ` W ) | 
						
							| 5 |  | pjth.l |  |-  L = ( LSubSp ` W ) | 
						
							| 6 |  | hlphl |  |-  ( W e. CHil -> W e. PreHil ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) | 
						
							| 8 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. LMod ) | 
						
							| 10 |  | simp2 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. L ) | 
						
							| 11 | 1 5 | lssss |  |-  ( U e. L -> U C_ V ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U C_ V ) | 
						
							| 13 | 1 3 5 | ocvlss |  |-  ( ( W e. PreHil /\ U C_ V ) -> ( O ` U ) e. L ) | 
						
							| 14 | 7 12 13 | syl2anc |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( O ` U ) e. L ) | 
						
							| 15 | 5 2 | lsmcl |  |-  ( ( W e. LMod /\ U e. L /\ ( O ` U ) e. L ) -> ( U .(+) ( O ` U ) ) e. L ) | 
						
							| 16 | 9 10 14 15 | syl3anc |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) e. L ) | 
						
							| 17 | 1 5 | lssss |  |-  ( ( U .(+) ( O ` U ) ) e. L -> ( U .(+) ( O ` U ) ) C_ V ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) C_ V ) | 
						
							| 19 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 20 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 21 |  | eqid |  |-  ( -g ` W ) = ( -g ` W ) | 
						
							| 22 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 23 |  | simpl1 |  |-  ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> W e. CHil ) | 
						
							| 24 |  | simpl2 |  |-  ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> U e. L ) | 
						
							| 25 |  | simpr |  |-  ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> x e. V ) | 
						
							| 26 |  | simpl3 |  |-  ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> U e. ( Clsd ` J ) ) | 
						
							| 27 | 1 19 20 21 22 5 23 24 25 4 2 3 26 | pjthlem2 |  |-  ( ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) /\ x e. V ) -> x e. ( U .(+) ( O ` U ) ) ) | 
						
							| 28 | 18 27 | eqelssd |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> ( U .(+) ( O ` U ) ) = V ) |