| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjthlem.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | pjthlem.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | pjthlem.p |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | pjthlem.m |  |-  .- = ( -g ` W ) | 
						
							| 5 |  | pjthlem.h |  |-  ., = ( .i ` W ) | 
						
							| 6 |  | pjthlem.l |  |-  L = ( LSubSp ` W ) | 
						
							| 7 |  | pjthlem.1 |  |-  ( ph -> W e. CHil ) | 
						
							| 8 |  | pjthlem.2 |  |-  ( ph -> U e. L ) | 
						
							| 9 |  | pjthlem.4 |  |-  ( ph -> A e. V ) | 
						
							| 10 |  | pjthlem.j |  |-  J = ( TopOpen ` W ) | 
						
							| 11 |  | pjthlem.s |  |-  .(+) = ( LSSum ` W ) | 
						
							| 12 |  | pjthlem.o |  |-  O = ( ocv ` W ) | 
						
							| 13 |  | pjthlem.3 |  |-  ( ph -> U e. ( Clsd ` J ) ) | 
						
							| 14 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 15 | 7 14 | syl |  |-  ( ph -> W e. CPreHil ) | 
						
							| 16 | 8 6 | eleqtrdi |  |-  ( ph -> U e. ( LSubSp ` W ) ) | 
						
							| 17 |  | hlcms |  |-  ( W e. CHil -> W e. CMetSp ) | 
						
							| 18 | 7 17 | syl |  |-  ( ph -> W e. CMetSp ) | 
						
							| 19 | 1 6 | lssss |  |-  ( U e. L -> U C_ V ) | 
						
							| 20 | 8 19 | syl |  |-  ( ph -> U C_ V ) | 
						
							| 21 |  | eqid |  |-  ( W |`s U ) = ( W |`s U ) | 
						
							| 22 | 21 1 10 | cmsss |  |-  ( ( W e. CMetSp /\ U C_ V ) -> ( ( W |`s U ) e. CMetSp <-> U e. ( Clsd ` J ) ) ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ph -> ( ( W |`s U ) e. CMetSp <-> U e. ( Clsd ` J ) ) ) | 
						
							| 24 | 13 23 | mpbird |  |-  ( ph -> ( W |`s U ) e. CMetSp ) | 
						
							| 25 | 1 4 2 15 16 24 9 | minvec |  |-  ( ph -> E! x e. U A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) | 
						
							| 26 |  | reurex |  |-  ( E! x e. U A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) -> E. x e. U A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> E. x e. U A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) | 
						
							| 28 | 15 | adantr |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> W e. CPreHil ) | 
						
							| 29 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> W e. LMod ) | 
						
							| 31 |  | lmodabl |  |-  ( W e. LMod -> W e. Abel ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> W e. Abel ) | 
						
							| 33 | 8 | adantr |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> U e. L ) | 
						
							| 34 | 33 19 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> U C_ V ) | 
						
							| 35 |  | simprl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> x e. U ) | 
						
							| 36 | 34 35 | sseldd |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> x e. V ) | 
						
							| 37 | 9 | adantr |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> A e. V ) | 
						
							| 38 | 1 3 4 | ablpncan3 |  |-  ( ( W e. Abel /\ ( x e. V /\ A e. V ) ) -> ( x .+ ( A .- x ) ) = A ) | 
						
							| 39 | 32 36 37 38 | syl12anc |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( x .+ ( A .- x ) ) = A ) | 
						
							| 40 | 6 | lsssssubg |  |-  ( W e. LMod -> L C_ ( SubGrp ` W ) ) | 
						
							| 41 | 30 40 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> L C_ ( SubGrp ` W ) ) | 
						
							| 42 | 41 33 | sseldd |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> U e. ( SubGrp ` W ) ) | 
						
							| 43 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 44 | 28 43 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> W e. PreHil ) | 
						
							| 45 | 1 12 6 | ocvlss |  |-  ( ( W e. PreHil /\ U C_ V ) -> ( O ` U ) e. L ) | 
						
							| 46 | 44 34 45 | syl2anc |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( O ` U ) e. L ) | 
						
							| 47 | 41 46 | sseldd |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( O ` U ) e. ( SubGrp ` W ) ) | 
						
							| 48 | 1 4 | lmodvsubcl |  |-  ( ( W e. LMod /\ A e. V /\ x e. V ) -> ( A .- x ) e. V ) | 
						
							| 49 | 30 37 36 48 | syl3anc |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( A .- x ) e. V ) | 
						
							| 50 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> W e. CHil ) | 
						
							| 51 | 33 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> U e. L ) | 
						
							| 52 | 49 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> ( A .- x ) e. V ) | 
						
							| 53 |  | simpr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> z e. U ) | 
						
							| 54 |  | oveq2 |  |-  ( y = ( w .+ x ) -> ( A .- y ) = ( A .- ( w .+ x ) ) ) | 
						
							| 55 | 54 | fveq2d |  |-  ( y = ( w .+ x ) -> ( N ` ( A .- y ) ) = ( N ` ( A .- ( w .+ x ) ) ) ) | 
						
							| 56 | 55 | breq2d |  |-  ( y = ( w .+ x ) -> ( ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) <-> ( N ` ( A .- x ) ) <_ ( N ` ( A .- ( w .+ x ) ) ) ) ) | 
						
							| 57 |  | simplrr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) | 
						
							| 58 | 30 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> W e. LMod ) | 
						
							| 59 | 33 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> U e. L ) | 
						
							| 60 |  | simpr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> w e. U ) | 
						
							| 61 | 35 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> x e. U ) | 
						
							| 62 | 3 6 | lssvacl |  |-  ( ( ( W e. LMod /\ U e. L ) /\ ( w e. U /\ x e. U ) ) -> ( w .+ x ) e. U ) | 
						
							| 63 | 58 59 60 61 62 | syl22anc |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> ( w .+ x ) e. U ) | 
						
							| 64 | 56 57 63 | rspcdva |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> ( N ` ( A .- x ) ) <_ ( N ` ( A .- ( w .+ x ) ) ) ) | 
						
							| 65 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 66 | 30 65 | syl |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> W e. Grp ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> W e. Grp ) | 
						
							| 68 | 37 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> A e. V ) | 
						
							| 69 | 36 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> x e. V ) | 
						
							| 70 | 34 | sselda |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> w e. V ) | 
						
							| 71 | 1 3 4 | grpsubsub4 |  |-  ( ( W e. Grp /\ ( A e. V /\ x e. V /\ w e. V ) ) -> ( ( A .- x ) .- w ) = ( A .- ( w .+ x ) ) ) | 
						
							| 72 | 67 68 69 70 71 | syl13anc |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> ( ( A .- x ) .- w ) = ( A .- ( w .+ x ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> ( N ` ( ( A .- x ) .- w ) ) = ( N ` ( A .- ( w .+ x ) ) ) ) | 
						
							| 74 | 64 73 | breqtrrd |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ w e. U ) -> ( N ` ( A .- x ) ) <_ ( N ` ( ( A .- x ) .- w ) ) ) | 
						
							| 75 | 74 | ralrimiva |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> A. w e. U ( N ` ( A .- x ) ) <_ ( N ` ( ( A .- x ) .- w ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> A. w e. U ( N ` ( A .- x ) ) <_ ( N ` ( ( A .- x ) .- w ) ) ) | 
						
							| 77 |  | eqid |  |-  ( ( ( A .- x ) ., z ) / ( ( z ., z ) + 1 ) ) = ( ( ( A .- x ) ., z ) / ( ( z ., z ) + 1 ) ) | 
						
							| 78 | 1 2 3 4 5 6 50 51 52 53 76 77 | pjthlem1 |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> ( ( A .- x ) ., z ) = 0 ) | 
						
							| 79 | 28 | adantr |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> W e. CPreHil ) | 
						
							| 80 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> W e. CMod ) | 
						
							| 82 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 83 | 82 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 84 | 81 83 | syl |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 85 | 78 84 | eqtrd |  |-  ( ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) /\ z e. U ) -> ( ( A .- x ) ., z ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 86 | 85 | ralrimiva |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> A. z e. U ( ( A .- x ) ., z ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 87 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 88 | 1 5 82 87 12 | elocv |  |-  ( ( A .- x ) e. ( O ` U ) <-> ( U C_ V /\ ( A .- x ) e. V /\ A. z e. U ( ( A .- x ) ., z ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 89 | 34 49 86 88 | syl3anbrc |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( A .- x ) e. ( O ` U ) ) | 
						
							| 90 | 3 11 | lsmelvali |  |-  ( ( ( U e. ( SubGrp ` W ) /\ ( O ` U ) e. ( SubGrp ` W ) ) /\ ( x e. U /\ ( A .- x ) e. ( O ` U ) ) ) -> ( x .+ ( A .- x ) ) e. ( U .(+) ( O ` U ) ) ) | 
						
							| 91 | 42 47 35 89 90 | syl22anc |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> ( x .+ ( A .- x ) ) e. ( U .(+) ( O ` U ) ) ) | 
						
							| 92 | 39 91 | eqeltrrd |  |-  ( ( ph /\ ( x e. U /\ A. y e. U ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) ) -> A e. ( U .(+) ( O ` U ) ) ) | 
						
							| 93 | 27 92 | rexlimddv |  |-  ( ph -> A e. ( U .(+) ( O ` U ) ) ) |