Step |
Hyp |
Ref |
Expression |
1 |
|
pjthlem.v |
|
2 |
|
pjthlem.n |
|
3 |
|
pjthlem.p |
|
4 |
|
pjthlem.m |
|
5 |
|
pjthlem.h |
|
6 |
|
pjthlem.l |
|
7 |
|
pjthlem.1 |
|
8 |
|
pjthlem.2 |
|
9 |
|
pjthlem.4 |
|
10 |
|
pjthlem.j |
|
11 |
|
pjthlem.s |
|
12 |
|
pjthlem.o |
|
13 |
|
pjthlem.3 |
|
14 |
|
hlcph |
|
15 |
7 14
|
syl |
|
16 |
8 6
|
eleqtrdi |
|
17 |
|
hlcms |
|
18 |
7 17
|
syl |
|
19 |
1 6
|
lssss |
|
20 |
8 19
|
syl |
|
21 |
|
eqid |
|
22 |
21 1 10
|
cmsss |
|
23 |
18 20 22
|
syl2anc |
|
24 |
13 23
|
mpbird |
|
25 |
1 4 2 15 16 24 9
|
minvec |
|
26 |
|
reurex |
|
27 |
25 26
|
syl |
|
28 |
15
|
adantr |
|
29 |
|
cphlmod |
|
30 |
28 29
|
syl |
|
31 |
|
lmodabl |
|
32 |
30 31
|
syl |
|
33 |
8
|
adantr |
|
34 |
33 19
|
syl |
|
35 |
|
simprl |
|
36 |
34 35
|
sseldd |
|
37 |
9
|
adantr |
|
38 |
1 3 4
|
ablpncan3 |
|
39 |
32 36 37 38
|
syl12anc |
|
40 |
6
|
lsssssubg |
|
41 |
30 40
|
syl |
|
42 |
41 33
|
sseldd |
|
43 |
|
cphphl |
|
44 |
28 43
|
syl |
|
45 |
1 12 6
|
ocvlss |
|
46 |
44 34 45
|
syl2anc |
|
47 |
41 46
|
sseldd |
|
48 |
1 4
|
lmodvsubcl |
|
49 |
30 37 36 48
|
syl3anc |
|
50 |
7
|
ad2antrr |
|
51 |
33
|
adantr |
|
52 |
49
|
adantr |
|
53 |
|
simpr |
|
54 |
|
oveq2 |
|
55 |
54
|
fveq2d |
|
56 |
55
|
breq2d |
|
57 |
|
simplrr |
|
58 |
30
|
adantr |
|
59 |
33
|
adantr |
|
60 |
|
simpr |
|
61 |
35
|
adantr |
|
62 |
3 6
|
lssvacl |
|
63 |
58 59 60 61 62
|
syl22anc |
|
64 |
56 57 63
|
rspcdva |
|
65 |
|
lmodgrp |
|
66 |
30 65
|
syl |
|
67 |
66
|
adantr |
|
68 |
37
|
adantr |
|
69 |
36
|
adantr |
|
70 |
34
|
sselda |
|
71 |
1 3 4
|
grpsubsub4 |
|
72 |
67 68 69 70 71
|
syl13anc |
|
73 |
72
|
fveq2d |
|
74 |
64 73
|
breqtrrd |
|
75 |
74
|
ralrimiva |
|
76 |
75
|
adantr |
|
77 |
|
eqid |
|
78 |
1 2 3 4 5 6 50 51 52 53 76 77
|
pjthlem1 |
|
79 |
28
|
adantr |
|
80 |
|
cphclm |
|
81 |
79 80
|
syl |
|
82 |
|
eqid |
|
83 |
82
|
clm0 |
|
84 |
81 83
|
syl |
|
85 |
78 84
|
eqtrd |
|
86 |
85
|
ralrimiva |
|
87 |
|
eqid |
|
88 |
1 5 82 87 12
|
elocv |
|
89 |
34 49 86 88
|
syl3anbrc |
|
90 |
3 11
|
lsmelvali |
|
91 |
42 47 35 89 90
|
syl22anc |
|
92 |
39 91
|
eqeltrrd |
|
93 |
27 92
|
rexlimddv |
|