Metamath Proof Explorer


Theorem pjthlem1

Description: Lemma for pjth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 17-Oct-2015) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses pjthlem.v V = Base W
pjthlem.n N = norm W
pjthlem.p + ˙ = + W
pjthlem.m - ˙ = - W
pjthlem.h , ˙ = 𝑖 W
pjthlem.l L = LSubSp W
pjthlem.1 φ W ℂHil
pjthlem.2 φ U L
pjthlem.4 φ A V
pjthlem.5 φ B U
pjthlem.7 φ x U N A N A - ˙ x
pjthlem.8 T = A , ˙ B B , ˙ B + 1
Assertion pjthlem1 φ A , ˙ B = 0

Proof

Step Hyp Ref Expression
1 pjthlem.v V = Base W
2 pjthlem.n N = norm W
3 pjthlem.p + ˙ = + W
4 pjthlem.m - ˙ = - W
5 pjthlem.h , ˙ = 𝑖 W
6 pjthlem.l L = LSubSp W
7 pjthlem.1 φ W ℂHil
8 pjthlem.2 φ U L
9 pjthlem.4 φ A V
10 pjthlem.5 φ B U
11 pjthlem.7 φ x U N A N A - ˙ x
12 pjthlem.8 T = A , ˙ B B , ˙ B + 1
13 hlcph W ℂHil W CPreHil
14 7 13 syl φ W CPreHil
15 1 6 lssss U L U V
16 8 15 syl φ U V
17 16 10 sseldd φ B V
18 1 5 cphipcl W CPreHil A V B V A , ˙ B
19 14 9 17 18 syl3anc φ A , ˙ B
20 19 abscld φ A , ˙ B
21 20 recnd φ A , ˙ B
22 20 resqcld φ A , ˙ B 2
23 22 renegcld φ A , ˙ B 2
24 1 5 reipcl W CPreHil B V B , ˙ B
25 14 17 24 syl2anc φ B , ˙ B
26 2re 2
27 readdcl B , ˙ B 2 B , ˙ B + 2
28 25 26 27 sylancl φ B , ˙ B + 2
29 0red φ 0
30 peano2re B , ˙ B B , ˙ B + 1
31 25 30 syl φ B , ˙ B + 1
32 1 5 ipge0 W CPreHil B V 0 B , ˙ B
33 14 17 32 syl2anc φ 0 B , ˙ B
34 25 ltp1d φ B , ˙ B < B , ˙ B + 1
35 29 25 31 33 34 lelttrd φ 0 < B , ˙ B + 1
36 31 ltp1d φ B , ˙ B + 1 < B , ˙ B + 1 + 1
37 25 recnd φ B , ˙ B
38 ax-1cn 1
39 addass B , ˙ B 1 1 B , ˙ B + 1 + 1 = B , ˙ B + 1 + 1
40 38 38 39 mp3an23 B , ˙ B B , ˙ B + 1 + 1 = B , ˙ B + 1 + 1
41 37 40 syl φ B , ˙ B + 1 + 1 = B , ˙ B + 1 + 1
42 df-2 2 = 1 + 1
43 42 oveq2i B , ˙ B + 2 = B , ˙ B + 1 + 1
44 41 43 syl6reqr φ B , ˙ B + 2 = B , ˙ B + 1 + 1
45 36 44 breqtrrd φ B , ˙ B + 1 < B , ˙ B + 2
46 29 31 28 35 45 lttrd φ 0 < B , ˙ B + 2
47 28 46 elrpd φ B , ˙ B + 2 +
48 oveq2 x = T W B A - ˙ x = A - ˙ T W B
49 48 fveq2d x = T W B N A - ˙ x = N A - ˙ T W B
50 49 breq2d x = T W B N A N A - ˙ x N A N A - ˙ T W B
51 cphlmod W CPreHil W LMod
52 14 51 syl φ W LMod
53 hlphl W ℂHil W PreHil
54 7 53 syl φ W PreHil
55 eqid Scalar W = Scalar W
56 eqid Base Scalar W = Base Scalar W
57 55 5 1 56 ipcl W PreHil A V B V A , ˙ B Base Scalar W
58 54 9 17 57 syl3anc φ A , ˙ B Base Scalar W
59 55 56 hlress W ℂHil Base Scalar W
60 7 59 syl φ Base Scalar W
61 60 31 sseldd φ B , ˙ B + 1 Base Scalar W
62 25 33 ge0p1rpd φ B , ˙ B + 1 +
63 62 rpne0d φ B , ˙ B + 1 0
64 55 56 cphdivcl W CPreHil A , ˙ B Base Scalar W B , ˙ B + 1 Base Scalar W B , ˙ B + 1 0 A , ˙ B B , ˙ B + 1 Base Scalar W
65 14 58 61 63 64 syl13anc φ A , ˙ B B , ˙ B + 1 Base Scalar W
66 12 65 eqeltrid φ T Base Scalar W
67 eqid W = W
68 55 67 56 6 lssvscl W LMod U L T Base Scalar W B U T W B U
69 52 8 66 10 68 syl22anc φ T W B U
70 50 11 69 rspcdva φ N A N A - ˙ T W B
71 cphngp W CPreHil W NrmGrp
72 14 71 syl φ W NrmGrp
73 1 2 nmcl W NrmGrp A V N A
74 72 9 73 syl2anc φ N A
75 1 55 67 56 lmodvscl W LMod T Base Scalar W B V T W B V
76 52 66 17 75 syl3anc φ T W B V
77 1 4 lmodvsubcl W LMod A V T W B V A - ˙ T W B V
78 52 9 76 77 syl3anc φ A - ˙ T W B V
79 1 2 nmcl W NrmGrp A - ˙ T W B V N A - ˙ T W B
80 72 78 79 syl2anc φ N A - ˙ T W B
81 1 2 nmge0 W NrmGrp A V 0 N A
82 72 9 81 syl2anc φ 0 N A
83 1 2 nmge0 W NrmGrp A - ˙ T W B V 0 N A - ˙ T W B
84 72 78 83 syl2anc φ 0 N A - ˙ T W B
85 74 80 82 84 le2sqd φ N A N A - ˙ T W B N A 2 N A - ˙ T W B 2
86 70 85 mpbid φ N A 2 N A - ˙ T W B 2
87 80 resqcld φ N A - ˙ T W B 2
88 74 resqcld φ N A 2
89 87 88 subge0d φ 0 N A - ˙ T W B 2 N A 2 N A 2 N A - ˙ T W B 2
90 86 89 mpbird φ 0 N A - ˙ T W B 2 N A 2
91 2z 2
92 rpexpcl B , ˙ B + 1 + 2 B , ˙ B + 1 2 +
93 62 91 92 sylancl φ B , ˙ B + 1 2 +
94 22 93 rerpdivcld φ A , ˙ B 2 B , ˙ B + 1 2
95 94 28 remulcld φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
96 95 recnd φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
97 96 negcld φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
98 1 5 cphipcl W CPreHil A V A V A , ˙ A
99 14 9 9 98 syl3anc φ A , ˙ A
100 97 99 pncand φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 + A , ˙ A - A , ˙ A = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
101 1 5 2 nmsq W CPreHil A - ˙ T W B V N A - ˙ T W B 2 = A - ˙ T W B , ˙ A - ˙ T W B
102 14 78 101 syl2anc φ N A - ˙ T W B 2 = A - ˙ T W B , ˙ A - ˙ T W B
103 5 1 4 cphsubdir W CPreHil A V T W B V A - ˙ T W B V A - ˙ T W B , ˙ A - ˙ T W B = A , ˙ A - ˙ T W B T W B , ˙ A - ˙ T W B
104 14 9 76 78 103 syl13anc φ A - ˙ T W B , ˙ A - ˙ T W B = A , ˙ A - ˙ T W B T W B , ˙ A - ˙ T W B
105 5 1 4 cphsubdi W CPreHil A V A V T W B V A , ˙ A - ˙ T W B = A , ˙ A A , ˙ T W B
106 14 9 9 76 105 syl13anc φ A , ˙ A - ˙ T W B = A , ˙ A A , ˙ T W B
107 106 oveq1d φ A , ˙ A - ˙ T W B T W B , ˙ A - ˙ T W B = A , ˙ A - A , ˙ T W B - T W B , ˙ A - ˙ T W B
108 1 5 cphipcl W CPreHil A V T W B V A , ˙ T W B
109 14 9 76 108 syl3anc φ A , ˙ T W B
110 5 1 4 cphsubdi W CPreHil T W B V A V T W B V T W B , ˙ A - ˙ T W B = T W B , ˙ A T W B , ˙ T W B
111 14 76 9 76 110 syl13anc φ T W B , ˙ A - ˙ T W B = T W B , ˙ A T W B , ˙ T W B
112 1 5 cphipcl W CPreHil T W B V A V T W B , ˙ A
113 14 76 9 112 syl3anc φ T W B , ˙ A
114 1 5 cphipcl W CPreHil T W B V T W B V T W B , ˙ T W B
115 14 76 76 114 syl3anc φ T W B , ˙ T W B
116 113 115 subcld φ T W B , ˙ A T W B , ˙ T W B
117 111 116 eqeltrd φ T W B , ˙ A - ˙ T W B
118 99 109 117 subsub4d φ A , ˙ A - A , ˙ T W B - T W B , ˙ A - ˙ T W B = A , ˙ A A , ˙ T W B + T W B , ˙ A - ˙ T W B
119 94 recnd φ A , ˙ B 2 B , ˙ B + 1 2
120 31 recnd φ B , ˙ B + 1
121 1cnd φ 1
122 119 120 121 adddid φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 + 1 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 + A , ˙ B 2 B , ˙ B + 1 2 1
123 44 oveq2d φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 + 1
124 5 1 55 56 67 cphassr W CPreHil T Base Scalar W A V B V A , ˙ T W B = T A , ˙ B
125 14 66 9 17 124 syl13anc φ A , ˙ T W B = T A , ˙ B
126 19 120 63 divcld φ A , ˙ B B , ˙ B + 1
127 12 126 eqeltrid φ T
128 127 cjcld φ T
129 128 19 mulcomd φ T A , ˙ B = A , ˙ B T
130 19 cjcld φ A , ˙ B
131 19 130 120 63 divassd φ A , ˙ B A , ˙ B B , ˙ B + 1 = A , ˙ B A , ˙ B B , ˙ B + 1
132 19 absvalsqd φ A , ˙ B 2 = A , ˙ B A , ˙ B
133 132 oveq1d φ A , ˙ B 2 B , ˙ B + 1 = A , ˙ B A , ˙ B B , ˙ B + 1
134 12 fveq2i T = A , ˙ B B , ˙ B + 1
135 19 120 63 cjdivd φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
136 31 cjred φ B , ˙ B + 1 = B , ˙ B + 1
137 136 oveq2d φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
138 135 137 eqtrd φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
139 134 138 syl5eq φ T = A , ˙ B B , ˙ B + 1
140 139 oveq2d φ A , ˙ B T = A , ˙ B A , ˙ B B , ˙ B + 1
141 131 133 140 3eqtr4rd φ A , ˙ B T = A , ˙ B 2 B , ˙ B + 1
142 125 129 141 3eqtrd φ A , ˙ T W B = A , ˙ B 2 B , ˙ B + 1
143 22 recnd φ A , ˙ B 2
144 143 120 mulcomd φ A , ˙ B 2 B , ˙ B + 1 = B , ˙ B + 1 A , ˙ B 2
145 120 sqvald φ B , ˙ B + 1 2 = B , ˙ B + 1 B , ˙ B + 1
146 144 145 oveq12d φ A , ˙ B 2 B , ˙ B + 1 B , ˙ B + 1 2 = B , ˙ B + 1 A , ˙ B 2 B , ˙ B + 1 B , ˙ B + 1
147 143 120 120 63 63 divcan5d φ B , ˙ B + 1 A , ˙ B 2 B , ˙ B + 1 B , ˙ B + 1 = A , ˙ B 2 B , ˙ B + 1
148 146 147 eqtr2d φ A , ˙ B 2 B , ˙ B + 1 = A , ˙ B 2 B , ˙ B + 1 B , ˙ B + 1 2
149 93 rpcnd φ B , ˙ B + 1 2
150 93 rpne0d φ B , ˙ B + 1 2 0
151 143 120 149 150 div23d φ A , ˙ B 2 B , ˙ B + 1 B , ˙ B + 1 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1
152 142 148 151 3eqtrd φ A , ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1
153 94 31 remulcld φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1
154 152 153 eqeltrd φ A , ˙ T W B
155 154 cjred φ A , ˙ T W B = A , ˙ T W B
156 5 1 cphipcj W CPreHil A V T W B V A , ˙ T W B = T W B , ˙ A
157 14 9 76 156 syl3anc φ A , ˙ T W B = T W B , ˙ A
158 155 157 152 3eqtr3d φ T W B , ˙ A = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1
159 5 1 55 56 67 cph2ass W CPreHil T Base Scalar W T Base Scalar W B V B V T W B , ˙ T W B = T T B , ˙ B
160 14 66 66 17 17 159 syl122anc φ T W B , ˙ T W B = T T B , ˙ B
161 12 fveq2i T = A , ˙ B B , ˙ B + 1
162 19 120 63 absdivd φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
163 62 rpge0d φ 0 B , ˙ B + 1
164 31 163 absidd φ B , ˙ B + 1 = B , ˙ B + 1
165 164 oveq2d φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
166 162 165 eqtrd φ A , ˙ B B , ˙ B + 1 = A , ˙ B B , ˙ B + 1
167 161 166 syl5eq φ T = A , ˙ B B , ˙ B + 1
168 167 oveq1d φ T 2 = A , ˙ B B , ˙ B + 1 2
169 127 absvalsqd φ T 2 = T T
170 21 120 63 sqdivd φ A , ˙ B B , ˙ B + 1 2 = A , ˙ B 2 B , ˙ B + 1 2
171 168 169 170 3eqtr3d φ T T = A , ˙ B 2 B , ˙ B + 1 2
172 171 oveq1d φ T T B , ˙ B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B
173 160 172 eqtrd φ T W B , ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B
174 158 173 oveq12d φ T W B , ˙ A T W B , ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B
175 pncan2 B , ˙ B 1 B , ˙ B + 1 - B , ˙ B = 1
176 37 38 175 sylancl φ B , ˙ B + 1 - B , ˙ B = 1
177 176 oveq2d φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 - B , ˙ B = A , ˙ B 2 B , ˙ B + 1 2 1
178 119 120 37 subdid φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 - B , ˙ B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B
179 177 178 eqtr3d φ A , ˙ B 2 B , ˙ B + 1 2 1 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B
180 174 111 179 3eqtr4d φ T W B , ˙ A - ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 1
181 152 180 oveq12d φ A , ˙ T W B + T W B , ˙ A - ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 1 + A , ˙ B 2 B , ˙ B + 1 2 1
182 122 123 181 3eqtr4rd φ A , ˙ T W B + T W B , ˙ A - ˙ T W B = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
183 182 oveq2d φ A , ˙ A A , ˙ T W B + T W B , ˙ A - ˙ T W B = A , ˙ A A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
184 107 118 183 3eqtrd φ A , ˙ A - ˙ T W B T W B , ˙ A - ˙ T W B = A , ˙ A A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
185 102 104 184 3eqtrd φ N A - ˙ T W B 2 = A , ˙ A A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
186 99 96 negsubd φ A , ˙ A + A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 = A , ˙ A A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
187 99 97 addcomd φ A , ˙ A + A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 = - A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 + A , ˙ A
188 185 186 187 3eqtr2d φ N A - ˙ T W B 2 = - A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 + A , ˙ A
189 1 5 2 nmsq W CPreHil A V N A 2 = A , ˙ A
190 14 9 189 syl2anc φ N A 2 = A , ˙ A
191 188 190 oveq12d φ N A - ˙ T W B 2 N A 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 + A , ˙ A - A , ˙ A
192 28 renegcld φ B , ˙ B + 2
193 192 recnd φ B , ˙ B + 2
194 143 193 149 150 div23d φ A , ˙ B 2 B , ˙ B + 2 B , ˙ B + 1 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
195 28 recnd φ B , ˙ B + 2
196 119 195 mulneg2d φ A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
197 194 196 eqtrd φ A , ˙ B 2 B , ˙ B + 2 B , ˙ B + 1 2 = A , ˙ B 2 B , ˙ B + 1 2 B , ˙ B + 2
198 100 191 197 3eqtr4rd φ A , ˙ B 2 B , ˙ B + 2 B , ˙ B + 1 2 = N A - ˙ T W B 2 N A 2
199 90 198 breqtrrd φ 0 A , ˙ B 2 B , ˙ B + 2 B , ˙ B + 1 2
200 22 192 remulcld φ A , ˙ B 2 B , ˙ B + 2
201 200 93 ge0divd φ 0 A , ˙ B 2 B , ˙ B + 2 0 A , ˙ B 2 B , ˙ B + 2 B , ˙ B + 1 2
202 199 201 mpbird φ 0 A , ˙ B 2 B , ˙ B + 2
203 mulneg12 A , ˙ B 2 B , ˙ B + 2 A , ˙ B 2 B , ˙ B + 2 = A , ˙ B 2 B , ˙ B + 2
204 143 195 203 syl2anc φ A , ˙ B 2 B , ˙ B + 2 = A , ˙ B 2 B , ˙ B + 2
205 202 204 breqtrrd φ 0 A , ˙ B 2 B , ˙ B + 2
206 23 47 205 prodge0ld φ 0 A , ˙ B 2
207 22 le0neg1d φ A , ˙ B 2 0 0 A , ˙ B 2
208 206 207 mpbird φ A , ˙ B 2 0
209 20 sqge0d φ 0 A , ˙ B 2
210 0re 0
211 letri3 A , ˙ B 2 0 A , ˙ B 2 = 0 A , ˙ B 2 0 0 A , ˙ B 2
212 22 210 211 sylancl φ A , ˙ B 2 = 0 A , ˙ B 2 0 0 A , ˙ B 2
213 208 209 212 mpbir2and φ A , ˙ B 2 = 0
214 21 213 sqeq0d φ A , ˙ B = 0
215 19 214 abs00d φ A , ˙ B = 0