| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjthlem.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
pjthlem.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 3 |
|
pjthlem.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
pjthlem.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 5 |
|
pjthlem.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 6 |
|
pjthlem.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
pjthlem.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂHil ) |
| 8 |
|
pjthlem.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) |
| 9 |
|
pjthlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 10 |
|
pjthlem.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 11 |
|
pjthlem.7 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
| 12 |
|
pjthlem.8 |
⊢ 𝑇 = ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 13 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
| 14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
| 15 |
1 6
|
lssss |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ 𝑉 ) |
| 16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 17 |
16 10
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 18 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| 19 |
14 9 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| 20 |
19
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
| 22 |
20
|
resqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 23 |
22
|
renegcld |
⊢ ( 𝜑 → - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 24 |
1 5
|
reipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
| 25 |
14 17 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
| 26 |
|
2re |
⊢ 2 ∈ ℝ |
| 27 |
|
readdcl |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
| 28 |
25 26 27
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
| 29 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 30 |
|
peano2re |
⊢ ( ( 𝐵 , 𝐵 ) ∈ ℝ → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ ) |
| 31 |
25 30
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ ) |
| 32 |
1 5
|
ipge0 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → 0 ≤ ( 𝐵 , 𝐵 ) ) |
| 33 |
14 17 32
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 , 𝐵 ) ) |
| 34 |
25
|
ltp1d |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) < ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 35 |
29 25 31 33 34
|
lelttrd |
⊢ ( 𝜑 → 0 < ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 36 |
31
|
ltp1d |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) < ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) |
| 37 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 38 |
37
|
oveq2i |
⊢ ( ( 𝐵 , 𝐵 ) + 2 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) |
| 39 |
25
|
recnd |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
| 40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 41 |
|
addass |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
| 42 |
40 40 41
|
mp3an23 |
⊢ ( ( 𝐵 , 𝐵 ) ∈ ℂ → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
| 43 |
39 42
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
| 44 |
38 43
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) |
| 45 |
36 44
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) < ( ( 𝐵 , 𝐵 ) + 2 ) ) |
| 46 |
29 31 28 35 45
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 𝐵 , 𝐵 ) + 2 ) ) |
| 47 |
28 46
|
elrpd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ+ ) |
| 48 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( 𝐴 − 𝑥 ) = ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 50 |
49
|
breq2d |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ↔ ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
| 51 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
| 52 |
14 51
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 53 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
| 54 |
7 53
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 55 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 56 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 57 |
55 5 1 56
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 58 |
54 9 17 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 59 |
55 56
|
hlress |
⊢ ( 𝑊 ∈ ℂHil → ℝ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 60 |
7 59
|
syl |
⊢ ( 𝜑 → ℝ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 61 |
60 31
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 62 |
25 33
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ+ ) |
| 63 |
62
|
rpne0d |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ≠ 0 ) |
| 64 |
55 56
|
cphdivcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐵 , 𝐵 ) + 1 ) ≠ 0 ) ) → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 65 |
14 58 61 63 64
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 66 |
12 65
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 67 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 68 |
55 67 56 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑈 ) ) → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑈 ) |
| 69 |
52 8 66 10 68
|
syl22anc |
⊢ ( 𝜑 → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑈 ) |
| 70 |
50 11 69
|
rspcdva |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 71 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
| 72 |
14 71
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
| 73 |
1 2
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 74 |
72 9 73
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 75 |
1 55 67 56
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 76 |
52 66 17 75
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 77 |
1 4
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) |
| 78 |
52 9 76 77
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) |
| 79 |
1 2
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℝ ) |
| 80 |
72 78 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℝ ) |
| 81 |
1 2
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 82 |
72 9 81
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 83 |
1 2
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 84 |
72 78 83
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 85 |
74 80 82 84
|
le2sqd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↔ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) |
| 86 |
70 85
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) |
| 87 |
80
|
resqcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 88 |
74
|
resqcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 89 |
87 88
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ↔ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) |
| 90 |
86 89
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 91 |
|
2z |
⊢ 2 ∈ ℤ |
| 92 |
|
rpexpcl |
⊢ ( ( ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 93 |
62 91 92
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 94 |
22 93
|
rerpdivcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 95 |
94 28
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℝ ) |
| 96 |
95
|
recnd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℂ ) |
| 97 |
96
|
negcld |
⊢ ( 𝜑 → - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℂ ) |
| 98 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 99 |
14 9 9 98
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 100 |
97 99
|
pncand |
⊢ ( 𝜑 → ( ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) − ( 𝐴 , 𝐴 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 101 |
1 5 2
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 102 |
14 78 101
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 103 |
5 1 4
|
cphsubdir |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) ) → ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
| 104 |
14 9 76 78 103
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
| 105 |
5 1 4
|
cphsubdi |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 106 |
14 9 9 76 105
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 107 |
106
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
| 108 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
| 109 |
14 9 76 108
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
| 110 |
5 1 4
|
cphsubdi |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 111 |
14 76 9 76 110
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
| 112 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ℂ ) |
| 113 |
14 76 9 112
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ℂ ) |
| 114 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
| 115 |
14 76 76 114
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
| 116 |
113 115
|
subcld |
⊢ ( 𝜑 → ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℂ ) |
| 117 |
111 116
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℂ ) |
| 118 |
99 109 117
|
subsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) ) |
| 119 |
94
|
recnd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 120 |
31
|
recnd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℂ ) |
| 121 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 122 |
119 120 121
|
adddid |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) + ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
| 123 |
44
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) ) |
| 124 |
5 1 55 56 67
|
cphassr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) ) |
| 125 |
14 66 9 17 124
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) ) |
| 126 |
19 120 63
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ℂ ) |
| 127 |
12 126
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 128 |
127
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) ∈ ℂ ) |
| 129 |
128 19
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) ) |
| 130 |
19
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
| 131 |
19 130 120 63
|
divassd |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐴 , 𝐵 ) · ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
| 132 |
19
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) |
| 133 |
132
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 134 |
12
|
fveq2i |
⊢ ( ∗ ‘ 𝑇 ) = ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 135 |
19 120 63
|
cjdivd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
| 136 |
31
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 138 |
135 137
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 139 |
134 138
|
eqtrid |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) = ( ( 𝐴 , 𝐵 ) · ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
| 141 |
131 133 140
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 142 |
125 129 141
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 143 |
22
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℂ ) |
| 144 |
143 120
|
mulcomd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) |
| 145 |
120
|
sqvald |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 146 |
144 145
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
| 147 |
143 120 120 63 63
|
divcan5d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 148 |
146 147
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
| 149 |
93
|
rpcnd |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 150 |
93
|
rpne0d |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 151 |
143 120 149 150
|
div23d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 152 |
142 148 151
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 153 |
94 31
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ℝ ) |
| 154 |
152 153
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℝ ) |
| 155 |
154
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) |
| 156 |
5 1
|
cphipcj |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) |
| 157 |
14 9 76 156
|
syl3anc |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) |
| 158 |
155 157 152
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 159 |
5 1 55 56 67
|
cph2ass |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) ) |
| 160 |
14 66 66 17 17 159
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) ) |
| 161 |
12
|
fveq2i |
⊢ ( abs ‘ 𝑇 ) = ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 162 |
19 120 63
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
| 163 |
62
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 164 |
31 163
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐵 , 𝐵 ) + 1 ) ) |
| 165 |
164
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 166 |
162 165
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 167 |
161 166
|
eqtrid |
⊢ ( 𝜑 → ( abs ‘ 𝑇 ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
| 168 |
167
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ↑ 2 ) ) |
| 169 |
127
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( 𝑇 · ( ∗ ‘ 𝑇 ) ) ) |
| 170 |
21 120 63
|
sqdivd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
| 171 |
168 169 170
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑇 · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
| 172 |
171
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) |
| 173 |
160 172
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) |
| 174 |
158 173
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
| 175 |
|
pncan2 |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) = 1 ) |
| 176 |
39 40 175
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) = 1 ) |
| 177 |
176
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
| 178 |
119 120 39
|
subdid |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
| 179 |
177 178
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
| 180 |
174 111 179
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
| 181 |
152 180
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) + ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
| 182 |
122 123 181
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 183 |
182
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) − ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
| 184 |
107 118 183
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
| 185 |
102 104 184
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
| 186 |
99 96
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
| 187 |
99 97
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) = ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) ) |
| 188 |
185 186 187
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) ) |
| 189 |
1 5 2
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 190 |
14 9 189
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 191 |
188 190
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) − ( 𝐴 , 𝐴 ) ) ) |
| 192 |
28
|
renegcld |
⊢ ( 𝜑 → - ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
| 193 |
192
|
recnd |
⊢ ( 𝜑 → - ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) |
| 194 |
143 193 149 150
|
div23d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 195 |
28
|
recnd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) |
| 196 |
119 195
|
mulneg2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 197 |
194 196
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 198 |
100 191 197
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 199 |
90 198
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
| 200 |
22 192
|
remulcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℝ ) |
| 201 |
200 93
|
ge0divd |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ↔ 0 ≤ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) ) |
| 202 |
199 201
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 203 |
|
mulneg12 |
⊢ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) → ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 204 |
143 195 203
|
syl2anc |
⊢ ( 𝜑 → ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 205 |
202 204
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
| 206 |
23 47 205
|
prodge0ld |
⊢ ( 𝜑 → 0 ≤ - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |
| 207 |
22
|
le0neg1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ↔ 0 ≤ - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) |
| 208 |
206 207
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ) |
| 209 |
20
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |
| 210 |
|
0re |
⊢ 0 ∈ ℝ |
| 211 |
|
letri3 |
⊢ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) ) |
| 212 |
22 210 211
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) ) |
| 213 |
208 209 212
|
mpbir2and |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ) |
| 214 |
21 213
|
sqeq0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) = 0 ) |
| 215 |
19 214
|
abs00d |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) = 0 ) |