| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjthlem.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | pjthlem.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | pjthlem.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 4 |  | pjthlem.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 5 |  | pjthlem.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 6 |  | pjthlem.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 7 |  | pjthlem.1 | ⊢ ( 𝜑  →  𝑊  ∈  ℂHil ) | 
						
							| 8 |  | pjthlem.2 | ⊢ ( 𝜑  →  𝑈  ∈  𝐿 ) | 
						
							| 9 |  | pjthlem.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 10 |  | pjthlem.5 | ⊢ ( 𝜑  →  𝐵  ∈  𝑈 ) | 
						
							| 11 |  | pjthlem.7 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑈 ( 𝑁 ‘ 𝐴 )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 12 |  | pjthlem.8 | ⊢ 𝑇  =  ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 13 |  | hlcph | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  ℂPreHil ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  ℂPreHil ) | 
						
							| 15 | 1 6 | lssss | ⊢ ( 𝑈  ∈  𝐿  →  𝑈  ⊆  𝑉 ) | 
						
							| 16 | 8 15 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  𝑉 ) | 
						
							| 17 | 16 10 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 18 | 1 5 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  ℂ ) | 
						
							| 19 | 14 9 17 18 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ,  𝐵 )  ∈  ℂ ) | 
						
							| 20 | 19 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  ,  𝐵 ) )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  ,  𝐵 ) )  ∈  ℂ ) | 
						
							| 22 | 20 | resqcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 23 | 22 | renegcld | ⊢ ( 𝜑  →  - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 24 | 1 5 | reipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ,  𝐵 )  ∈  ℝ ) | 
						
							| 25 | 14 17 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ,  𝐵 )  ∈  ℝ ) | 
						
							| 26 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 27 |  | readdcl | ⊢ ( ( ( 𝐵  ,  𝐵 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℝ ) | 
						
							| 28 | 25 26 27 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℝ ) | 
						
							| 29 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 30 |  | peano2re | ⊢ ( ( 𝐵  ,  𝐵 )  ∈  ℝ  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ℝ ) | 
						
							| 31 | 25 30 | syl | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ℝ ) | 
						
							| 32 | 1 5 | ipge0 | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐵  ∈  𝑉 )  →  0  ≤  ( 𝐵  ,  𝐵 ) ) | 
						
							| 33 | 14 17 32 | syl2anc | ⊢ ( 𝜑  →  0  ≤  ( 𝐵  ,  𝐵 ) ) | 
						
							| 34 | 25 | ltp1d | ⊢ ( 𝜑  →  ( 𝐵  ,  𝐵 )  <  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 35 | 29 25 31 33 34 | lelttrd | ⊢ ( 𝜑  →  0  <  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 36 | 31 | ltp1d | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  <  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 ) ) | 
						
							| 37 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 38 | 37 | oveq2i | ⊢ ( ( 𝐵  ,  𝐵 )  +  2 )  =  ( ( 𝐵  ,  𝐵 )  +  ( 1  +  1 ) ) | 
						
							| 39 | 25 | recnd | ⊢ ( 𝜑  →  ( 𝐵  ,  𝐵 )  ∈  ℂ ) | 
						
							| 40 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 41 |  | addass | ⊢ ( ( ( 𝐵  ,  𝐵 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 )  =  ( ( 𝐵  ,  𝐵 )  +  ( 1  +  1 ) ) ) | 
						
							| 42 | 40 40 41 | mp3an23 | ⊢ ( ( 𝐵  ,  𝐵 )  ∈  ℂ  →  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 )  =  ( ( 𝐵  ,  𝐵 )  +  ( 1  +  1 ) ) ) | 
						
							| 43 | 39 42 | syl | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 )  =  ( ( 𝐵  ,  𝐵 )  +  ( 1  +  1 ) ) ) | 
						
							| 44 | 38 43 | eqtr4id | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  2 )  =  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 ) ) | 
						
							| 45 | 36 44 | breqtrrd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  <  ( ( 𝐵  ,  𝐵 )  +  2 ) ) | 
						
							| 46 | 29 31 28 35 45 | lttrd | ⊢ ( 𝜑  →  0  <  ( ( 𝐵  ,  𝐵 )  +  2 ) ) | 
						
							| 47 | 28 46 | elrpd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℝ+ ) | 
						
							| 48 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  →  ( 𝐴  −  𝑥 )  =  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( 𝑥  =  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  =  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( 𝑥  =  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  →  ( ( 𝑁 ‘ 𝐴 )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ↔  ( 𝑁 ‘ 𝐴 )  ≤  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) ) | 
						
							| 51 |  | cphlmod | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LMod ) | 
						
							| 52 | 14 51 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 53 |  | hlphl | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  PreHil ) | 
						
							| 54 | 7 53 | syl | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 55 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 57 | 55 5 1 56 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 58 | 54 9 17 57 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 59 | 55 56 | hlress | ⊢ ( 𝑊  ∈  ℂHil  →  ℝ  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 60 | 7 59 | syl | ⊢ ( 𝜑  →  ℝ  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 61 | 60 31 | sseldd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 62 | 25 33 | ge0p1rpd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ℝ+ ) | 
						
							| 63 | 62 | rpne0d | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ≠  0 ) | 
						
							| 64 | 55 56 | cphdivcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( ( 𝐵  ,  𝐵 )  +  1 )  ≠  0 ) )  →  ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 65 | 14 58 61 63 64 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 66 | 12 65 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 67 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 68 | 55 67 56 6 | lssvscl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  ∧  ( 𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝐵  ∈  𝑈 ) )  →  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑈 ) | 
						
							| 69 | 52 8 66 10 68 | syl22anc | ⊢ ( 𝜑  →  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑈 ) | 
						
							| 70 | 50 11 69 | rspcdva | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝐴 )  ≤  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 71 |  | cphngp | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmGrp ) | 
						
							| 72 | 14 71 | syl | ⊢ ( 𝜑  →  𝑊  ∈  NrmGrp ) | 
						
							| 73 | 1 2 | nmcl | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝐴  ∈  𝑉 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 74 | 72 9 73 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 75 | 1 55 67 56 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝐵  ∈  𝑉 )  →  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 ) | 
						
							| 76 | 52 66 17 75 | syl3anc | ⊢ ( 𝜑  →  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 ) | 
						
							| 77 | 1 4 | lmodvsubcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 )  →  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 ) | 
						
							| 78 | 52 9 76 77 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 ) | 
						
							| 79 | 1 2 | nmcl | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 80 | 72 78 79 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 81 | 1 2 | nmge0 | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝐴  ∈  𝑉 )  →  0  ≤  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 82 | 72 9 81 | syl2anc | ⊢ ( 𝜑  →  0  ≤  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 83 | 1 2 | nmge0 | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 84 | 72 78 83 | syl2anc | ⊢ ( 𝜑  →  0  ≤  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 85 | 74 80 82 84 | le2sqd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐴 )  ≤  ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  ↔  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  ≤  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 86 | 70 85 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  ≤  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) | 
						
							| 87 | 80 | resqcld | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 88 | 74 | resqcld | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 89 | 87 88 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  −  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) )  ↔  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  ≤  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 90 | 86 89 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  −  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 91 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 92 |  | rpexpcl | ⊢ ( ( ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 93 | 62 91 92 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 94 | 22 93 | rerpdivcld | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 95 | 94 28 | remulcld | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  ∈  ℂ ) | 
						
							| 97 | 96 | negcld | ⊢ ( 𝜑  →  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  ∈  ℂ ) | 
						
							| 98 | 1 5 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,  𝐴 )  ∈  ℂ ) | 
						
							| 99 | 14 9 9 98 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ,  𝐴 )  ∈  ℂ ) | 
						
							| 100 | 97 99 | pncand | ⊢ ( 𝜑  →  ( ( - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  +  ( 𝐴  ,  𝐴 ) )  −  ( 𝐴  ,  𝐴 ) )  =  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 101 | 1 5 2 | nmsq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 )  →  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  =  ( ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 102 | 14 78 101 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  =  ( ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 103 | 5 1 4 | cphsubdir | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉  ∧  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  𝑉 ) )  →  ( ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) ) | 
						
							| 104 | 14 9 76 78 103 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) ) | 
						
							| 105 | 5 1 4 | cphsubdi | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 ) )  →  ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 106 | 14 9 9 76 105 | syl13anc | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 107 | 106 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) )  =  ( ( ( 𝐴  ,  𝐴 )  −  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) ) | 
						
							| 108 | 1 5 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 )  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  ℂ ) | 
						
							| 109 | 14 9 76 108 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  ℂ ) | 
						
							| 110 | 5 1 4 | cphsubdi | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 ) )  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 111 | 14 76 9 76 110 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) | 
						
							| 112 | 1 5 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  ∈  ℂ ) | 
						
							| 113 | 14 76 9 112 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  ∈  ℂ ) | 
						
							| 114 | 1 5 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 )  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  ℂ ) | 
						
							| 115 | 14 76 76 114 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  ℂ ) | 
						
							| 116 | 113 115 | subcld | ⊢ ( 𝜑  →  ( ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 117 | 111 116 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 118 | 99 109 117 | subsub4d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ,  𝐴 )  −  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  +  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) ) ) | 
						
							| 119 | 94 | recnd | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 120 | 31 | recnd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  1 )  ∈  ℂ ) | 
						
							| 121 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 122 | 119 120 121 | adddid | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 ) )  =  ( ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  +  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  1 ) ) ) | 
						
							| 123 | 44 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( ( 𝐵  ,  𝐵 )  +  1 )  +  1 ) ) ) | 
						
							| 124 | 5 1 55 56 67 | cphassr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( ∗ ‘ 𝑇 )  ·  ( 𝐴  ,  𝐵 ) ) ) | 
						
							| 125 | 14 66 9 17 124 | syl13anc | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( ∗ ‘ 𝑇 )  ·  ( 𝐴  ,  𝐵 ) ) ) | 
						
							| 126 | 19 120 63 | divcld | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  ∈  ℂ ) | 
						
							| 127 | 12 126 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 128 | 127 | cjcld | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑇 )  ∈  ℂ ) | 
						
							| 129 | 128 19 | mulcomd | ⊢ ( 𝜑  →  ( ( ∗ ‘ 𝑇 )  ·  ( 𝐴  ,  𝐵 ) )  =  ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ 𝑇 ) ) ) | 
						
							| 130 | 19 | cjcld | ⊢ ( 𝜑  →  ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  ∈  ℂ ) | 
						
							| 131 | 19 130 120 63 | divassd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ ( 𝐴  ,  𝐵 ) ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( 𝐴  ,  𝐵 )  ·  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) ) | 
						
							| 132 | 19 | absvalsqd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ ( 𝐴  ,  𝐵 ) ) ) ) | 
						
							| 133 | 132 | oveq1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ ( 𝐴  ,  𝐵 ) ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 134 | 12 | fveq2i | ⊢ ( ∗ ‘ 𝑇 )  =  ( ∗ ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 135 | 19 120 63 | cjdivd | ⊢ ( 𝜑  →  ( ∗ ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ∗ ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) ) | 
						
							| 136 | 31 | cjred | ⊢ ( 𝜑  →  ( ∗ ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 137 | 136 | oveq2d | ⊢ ( 𝜑  →  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ∗ ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 138 | 135 137 | eqtrd | ⊢ ( 𝜑  →  ( ∗ ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 139 | 134 138 | eqtrid | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑇 )  =  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 140 | 139 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ 𝑇 ) )  =  ( ( 𝐴  ,  𝐵 )  ·  ( ( ∗ ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) ) | 
						
							| 141 | 131 133 140 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐵 )  ·  ( ∗ ‘ 𝑇 ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 142 | 125 129 141 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 143 | 22 | recnd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 144 | 143 120 | mulcomd | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 145 | 120 | sqvald | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 )  =  ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 146 | 144 145 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  =  ( ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) ) | 
						
							| 147 | 143 120 120 63 63 | divcan5d | ⊢ ( 𝜑  →  ( ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 148 | 146 147 | eqtr2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 149 | 93 | rpcnd | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 150 | 93 | rpne0d | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 )  ≠  0 ) | 
						
							| 151 | 143 120 149 150 | div23d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 152 | 142 148 151 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 153 | 94 31 | remulcld | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  ∈  ℝ ) | 
						
							| 154 | 152 153 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  ∈  ℝ ) | 
						
							| 155 | 154 | cjred | ⊢ ( 𝜑  →  ( ∗ ‘ ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) | 
						
							| 156 | 5 1 | cphipcj | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ∈  𝑉 )  →  ( ∗ ‘ ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 ) ) | 
						
							| 157 | 14 9 76 156 | syl3anc | ⊢ ( 𝜑  →  ( ∗ ‘ ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 ) ) | 
						
							| 158 | 155 157 152 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 159 | 5 1 55 56 67 | cph2ass | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑇  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( 𝑇  ·  ( ∗ ‘ 𝑇 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 160 | 14 66 66 17 17 159 | syl122anc | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( 𝑇  ·  ( ∗ ‘ 𝑇 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 161 | 12 | fveq2i | ⊢ ( abs ‘ 𝑇 )  =  ( abs ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 162 | 19 120 63 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( abs ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) ) | 
						
							| 163 | 62 | rpge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 164 | 31 163 | absidd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) )  =  ( ( 𝐵  ,  𝐵 )  +  1 ) ) | 
						
							| 165 | 164 | oveq2d | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( abs ‘ ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 166 | 162 165 | eqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐴  ,  𝐵 )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) )  =  ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 167 | 161 166 | eqtrid | ⊢ ( 𝜑  →  ( abs ‘ 𝑇 )  =  ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ) | 
						
							| 168 | 167 | oveq1d | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑇 ) ↑ 2 )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ↑ 2 ) ) | 
						
							| 169 | 127 | absvalsqd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑇 ) ↑ 2 )  =  ( 𝑇  ·  ( ∗ ‘ 𝑇 ) ) ) | 
						
							| 170 | 21 120 63 | sqdivd | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) )  /  ( ( 𝐵  ,  𝐵 )  +  1 ) ) ↑ 2 )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 171 | 168 169 170 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑇  ·  ( ∗ ‘ 𝑇 ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 172 | 171 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑇  ·  ( ∗ ‘ 𝑇 ) )  ·  ( 𝐵  ,  𝐵 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 173 | 160 172 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 174 | 158 173 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  𝐴 )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) ) | 
						
							| 175 |  | pncan2 | ⊢ ( ( ( 𝐵  ,  𝐵 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝐵  ,  𝐵 )  +  1 )  −  ( 𝐵  ,  𝐵 ) )  =  1 ) | 
						
							| 176 | 39 40 175 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝐵  ,  𝐵 )  +  1 )  −  ( 𝐵  ,  𝐵 ) )  =  1 ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( ( 𝐵  ,  𝐵 )  +  1 )  −  ( 𝐵  ,  𝐵 ) ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  1 ) ) | 
						
							| 178 | 119 120 39 | subdid | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( ( 𝐵  ,  𝐵 )  +  1 )  −  ( 𝐵  ,  𝐵 ) ) )  =  ( ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) ) | 
						
							| 179 | 177 178 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  1 )  =  ( ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( 𝐵  ,  𝐵 ) ) ) ) | 
						
							| 180 | 174 111 179 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  1 ) ) | 
						
							| 181 | 152 180 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  +  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) )  =  ( ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  1 ) )  +  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  1 ) ) ) | 
						
							| 182 | 122 123 181 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  +  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 183 | 182 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐴 )  −  ( ( 𝐴  ,  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) )  +  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) ) | 
						
							| 184 | 107 118 183 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) )  −  ( ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 )  ,  ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) ) | 
						
							| 185 | 102 104 184 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  =  ( ( 𝐴  ,  𝐴 )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) ) | 
						
							| 186 | 99 96 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐴 )  +  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) )  =  ( ( 𝐴  ,  𝐴 )  −  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) ) | 
						
							| 187 | 99 97 | addcomd | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐴 )  +  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) )  =  ( - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  +  ( 𝐴  ,  𝐴 ) ) ) | 
						
							| 188 | 185 186 187 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  =  ( - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  +  ( 𝐴  ,  𝐴 ) ) ) | 
						
							| 189 | 1 5 2 | nmsq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 190 | 14 9 189 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 191 | 188 190 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  −  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) )  =  ( ( - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  +  ( 𝐴  ,  𝐴 ) )  −  ( 𝐴  ,  𝐴 ) ) ) | 
						
							| 192 | 28 | renegcld | ⊢ ( 𝜑  →  - ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℝ ) | 
						
							| 193 | 192 | recnd | ⊢ ( 𝜑  →  - ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℂ ) | 
						
							| 194 | 143 193 149 150 | div23d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  =  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 195 | 28 | recnd | ⊢ ( 𝜑  →  ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℂ ) | 
						
							| 196 | 119 195 | mulneg2d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  =  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 197 | 194 196 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  =  - ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 198 | 100 191 197 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ ( 𝐴  −  ( 𝑇 (  ·𝑠  ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 )  −  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 199 | 90 198 | breqtrrd | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 200 | 22 192 | remulcld | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  ∈  ℝ ) | 
						
							| 201 | 200 93 | ge0divd | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  ↔  0  ≤  ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) )  /  ( ( ( 𝐵  ,  𝐵 )  +  1 ) ↑ 2 ) ) ) ) | 
						
							| 202 | 199 201 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 203 |  | mulneg12 | ⊢ ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ∈  ℂ  ∧  ( ( 𝐵  ,  𝐵 )  +  2 )  ∈  ℂ )  →  ( - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 204 | 143 195 203 | syl2anc | ⊢ ( 𝜑  →  ( - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) )  =  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  - ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 205 | 202 204 | breqtrrd | ⊢ ( 𝜑  →  0  ≤  ( - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ·  ( ( 𝐵  ,  𝐵 )  +  2 ) ) ) | 
						
							| 206 | 23 47 205 | prodge0ld | ⊢ ( 𝜑  →  0  ≤  - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) | 
						
							| 207 | 22 | le0neg1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ≤  0  ↔  0  ≤  - ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 208 | 206 207 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ≤  0 ) | 
						
							| 209 | 20 | sqge0d | ⊢ ( 𝜑  →  0  ≤  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) | 
						
							| 210 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 211 |  | letri3 | ⊢ ( ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  =  0  ↔  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ≤  0  ∧  0  ≤  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) ) ) | 
						
							| 212 | 22 210 211 | sylancl | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  =  0  ↔  ( ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  ≤  0  ∧  0  ≤  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 ) ) ) ) | 
						
							| 213 | 208 209 212 | mpbir2and | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  ,  𝐵 ) ) ↑ 2 )  =  0 ) | 
						
							| 214 | 21 213 | sqeq0d | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  ,  𝐵 ) )  =  0 ) | 
						
							| 215 | 19 214 | abs00d | ⊢ ( 𝜑  →  ( 𝐴  ,  𝐵 )  =  0 ) |