Step |
Hyp |
Ref |
Expression |
1 |
|
pjthlem.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
pjthlem.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
pjthlem.p |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
pjthlem.m |
⊢ − = ( -g ‘ 𝑊 ) |
5 |
|
pjthlem.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
6 |
|
pjthlem.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
7 |
|
pjthlem.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂHil ) |
8 |
|
pjthlem.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) |
9 |
|
pjthlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
10 |
|
pjthlem.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
11 |
|
pjthlem.7 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
12 |
|
pjthlem.8 |
⊢ 𝑇 = ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) |
13 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
15 |
1 6
|
lssss |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ 𝑉 ) |
16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
17 |
16 10
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
18 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
19 |
14 9 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
20 |
19
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
22 |
20
|
resqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
23 |
22
|
renegcld |
⊢ ( 𝜑 → - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
24 |
1 5
|
reipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
25 |
14 17 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
26 |
|
2re |
⊢ 2 ∈ ℝ |
27 |
|
readdcl |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
28 |
25 26 27
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
29 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
30 |
|
peano2re |
⊢ ( ( 𝐵 , 𝐵 ) ∈ ℝ → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ ) |
31 |
25 30
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ ) |
32 |
1 5
|
ipge0 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → 0 ≤ ( 𝐵 , 𝐵 ) ) |
33 |
14 17 32
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 , 𝐵 ) ) |
34 |
25
|
ltp1d |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) < ( ( 𝐵 , 𝐵 ) + 1 ) ) |
35 |
29 25 31 33 34
|
lelttrd |
⊢ ( 𝜑 → 0 < ( ( 𝐵 , 𝐵 ) + 1 ) ) |
36 |
31
|
ltp1d |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) < ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) |
37 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
38 |
37
|
oveq2i |
⊢ ( ( 𝐵 , 𝐵 ) + 2 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) |
39 |
25
|
recnd |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
41 |
|
addass |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
42 |
40 40 41
|
mp3an23 |
⊢ ( ( 𝐵 , 𝐵 ) ∈ ℂ → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
43 |
39 42
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) = ( ( 𝐵 , 𝐵 ) + ( 1 + 1 ) ) ) |
44 |
38 43
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) |
45 |
36 44
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) < ( ( 𝐵 , 𝐵 ) + 2 ) ) |
46 |
29 31 28 35 45
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 𝐵 , 𝐵 ) + 2 ) ) |
47 |
28 46
|
elrpd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ+ ) |
48 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( 𝐴 − 𝑥 ) = ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
50 |
49
|
breq2d |
⊢ ( 𝑥 = ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) → ( ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ↔ ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
51 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
52 |
14 51
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
53 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
54 |
7 53
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
55 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
56 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
57 |
55 5 1 56
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
58 |
54 9 17 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
59 |
55 56
|
hlress |
⊢ ( 𝑊 ∈ ℂHil → ℝ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
60 |
7 59
|
syl |
⊢ ( 𝜑 → ℝ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
61 |
60 31
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
62 |
25 33
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ+ ) |
63 |
62
|
rpne0d |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ≠ 0 ) |
64 |
55 56
|
cphdivcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐵 , 𝐵 ) + 1 ) ≠ 0 ) ) → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
65 |
14 58 61 63 64
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
66 |
12 65
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
67 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
68 |
55 67 56 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑈 ) ) → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑈 ) |
69 |
52 8 66 10 68
|
syl22anc |
⊢ ( 𝜑 → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑈 ) |
70 |
50 11 69
|
rspcdva |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
71 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
72 |
14 71
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
73 |
1 2
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
74 |
72 9 73
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
75 |
1 55 67 56
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
76 |
52 66 17 75
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
77 |
1 4
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) |
78 |
52 9 76 77
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) |
79 |
1 2
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℝ ) |
80 |
72 78 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℝ ) |
81 |
1 2
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
82 |
72 9 81
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
83 |
1 2
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
84 |
72 78 83
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
85 |
74 80 82 84
|
le2sqd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ≤ ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↔ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) |
86 |
70 85
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) |
87 |
80
|
resqcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
88 |
74
|
resqcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
89 |
87 88
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ↔ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) ) ) |
90 |
86 89
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
91 |
|
2z |
⊢ 2 ∈ ℤ |
92 |
|
rpexpcl |
⊢ ( ( ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
93 |
62 91 92
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
94 |
22 93
|
rerpdivcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
95 |
94 28
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℝ ) |
96 |
95
|
recnd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℂ ) |
97 |
96
|
negcld |
⊢ ( 𝜑 → - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℂ ) |
98 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
99 |
14 9 9 98
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
100 |
97 99
|
pncand |
⊢ ( 𝜑 → ( ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) − ( 𝐴 , 𝐴 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
101 |
1 5 2
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
102 |
14 78 101
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
103 |
5 1 4
|
cphsubdir |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ 𝑉 ) ) → ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
104 |
14 9 76 78 103
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
105 |
5 1 4
|
cphsubdi |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
106 |
14 9 9 76 105
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
107 |
106
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) |
108 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
109 |
14 9 76 108
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
110 |
5 1 4
|
cphsubdi |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
111 |
14 76 9 76 110
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) |
112 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ℂ ) |
113 |
14 76 9 112
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ℂ ) |
114 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
115 |
14 76 76 114
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℂ ) |
116 |
113 115
|
subcld |
⊢ ( 𝜑 → ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℂ ) |
117 |
111 116
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ∈ ℂ ) |
118 |
99 109 117
|
subsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐴 ) − ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) ) |
119 |
94
|
recnd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
120 |
31
|
recnd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 1 ) ∈ ℂ ) |
121 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
122 |
119 120 121
|
adddid |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) + ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
123 |
44
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) + 1 ) ) ) |
124 |
5 1 55 56 67
|
cphassr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) ) |
125 |
14 66 9 17 124
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) ) |
126 |
19 120 63
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ℂ ) |
127 |
12 126
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
128 |
127
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) ∈ ℂ ) |
129 |
128 19
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑇 ) · ( 𝐴 , 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) ) |
130 |
19
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
131 |
19 130 120 63
|
divassd |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐴 , 𝐵 ) · ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
132 |
19
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) |
133 |
132
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
134 |
12
|
fveq2i |
⊢ ( ∗ ‘ 𝑇 ) = ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
135 |
19 120 63
|
cjdivd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
136 |
31
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐵 , 𝐵 ) + 1 ) ) |
137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ∗ ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
138 |
135 137
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
139 |
134 138
|
eqtrid |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) = ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) = ( ( 𝐴 , 𝐵 ) · ( ( ∗ ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
141 |
131 133 140
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
142 |
125 129 141
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
143 |
22
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℂ ) |
144 |
143 120
|
mulcomd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) |
145 |
120
|
sqvald |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) = ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
146 |
144 145
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
147 |
143 120 120 63 63
|
divcan5d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
148 |
146 147
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
149 |
93
|
rpcnd |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
150 |
93
|
rpne0d |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ≠ 0 ) |
151 |
143 120 149 150
|
div23d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
152 |
142 148 151
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
153 |
94 31
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ∈ ℝ ) |
154 |
152 153
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ∈ ℝ ) |
155 |
154
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) |
156 |
5 1
|
cphipcj |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) |
157 |
14 9 76 156
|
syl3anc |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) |
158 |
155 157 152
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
159 |
5 1 55 56 67
|
cph2ass |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑇 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) ) |
160 |
14 66 66 17 17 159
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) ) |
161 |
12
|
fveq2i |
⊢ ( abs ‘ 𝑇 ) = ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
162 |
19 120 63
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) ) |
163 |
62
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐵 , 𝐵 ) + 1 ) ) |
164 |
31 163
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) = ( ( 𝐵 , 𝐵 ) + 1 ) ) |
165 |
164
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( abs ‘ ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
166 |
162 165
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
167 |
161 166
|
eqtrid |
⊢ ( 𝜑 → ( abs ‘ 𝑇 ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ) |
168 |
167
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ↑ 2 ) ) |
169 |
127
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( 𝑇 · ( ∗ ‘ 𝑇 ) ) ) |
170 |
21 120 63
|
sqdivd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) / ( ( 𝐵 , 𝐵 ) + 1 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
171 |
168 169 170
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑇 · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
172 |
171
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐵 , 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) |
173 |
160 172
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) |
174 |
158 173
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , 𝐴 ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
175 |
|
pncan2 |
⊢ ( ( ( 𝐵 , 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) = 1 ) |
176 |
39 40 175
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) = 1 ) |
177 |
176
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
178 |
119 120 39
|
subdid |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐵 , 𝐵 ) + 1 ) − ( 𝐵 , 𝐵 ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
179 |
177 178
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( 𝐵 , 𝐵 ) ) ) ) |
180 |
174 111 179
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
181 |
152 180
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 1 ) ) + ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
182 |
122 123 181
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
183 |
182
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) − ( ( 𝐴 , ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) + ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
184 |
107 118 183
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) − ( ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) , ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
185 |
102 104 184
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
186 |
99 96
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) = ( ( 𝐴 , 𝐴 ) − ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) ) |
187 |
99 97
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) = ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) ) |
188 |
185 186 187
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) = ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) ) |
189 |
1 5 2
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
190 |
14 9 189
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
191 |
188 190
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( ( - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) + ( 𝐴 , 𝐴 ) ) − ( 𝐴 , 𝐴 ) ) ) |
192 |
28
|
renegcld |
⊢ ( 𝜑 → - ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℝ ) |
193 |
192
|
recnd |
⊢ ( 𝜑 → - ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) |
194 |
143 193 149 150
|
div23d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
195 |
28
|
recnd |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) |
196 |
119 195
|
mulneg2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
197 |
194 196
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = - ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
198 |
100 191 197
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 − ( 𝑇 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
199 |
90 198
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) |
200 |
22 192
|
remulcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ∈ ℝ ) |
201 |
200 93
|
ge0divd |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ↔ 0 ≤ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) / ( ( ( 𝐵 , 𝐵 ) + 1 ) ↑ 2 ) ) ) ) |
202 |
199 201
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
203 |
|
mulneg12 |
⊢ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝐵 , 𝐵 ) + 2 ) ∈ ℂ ) → ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
204 |
143 195 203
|
syl2anc |
⊢ ( 𝜑 → ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) = ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · - ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
205 |
202 204
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) · ( ( 𝐵 , 𝐵 ) + 2 ) ) ) |
206 |
23 47 205
|
prodge0ld |
⊢ ( 𝜑 → 0 ≤ - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |
207 |
22
|
le0neg1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ↔ 0 ≤ - ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) |
208 |
206 207
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ) |
209 |
20
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |
210 |
|
0re |
⊢ 0 ∈ ℝ |
211 |
|
letri3 |
⊢ ( ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) ) |
212 |
22 210 211
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) ) ) |
213 |
208 209 212
|
mpbir2and |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = 0 ) |
214 |
21 213
|
sqeq0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , 𝐵 ) ) = 0 ) |
215 |
19 214
|
abs00d |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) = 0 ) |