Metamath Proof Explorer


Theorem rerpdivcld

Description: Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion rerpdivcld ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
2 rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 rerpdivcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ )