| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjth.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | pjth.s | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 3 |  | pjth.o | ⊢ 𝑂  =  ( ocv ‘ 𝑊 ) | 
						
							| 4 |  | pjth.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 5 |  | pjth.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 6 |  | hlphl | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  PreHil ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 8 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑊  ∈  LMod ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  𝐿 ) | 
						
							| 11 | 1 5 | lssss | ⊢ ( 𝑈  ∈  𝐿  →  𝑈  ⊆  𝑉 ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ⊆  𝑉 ) | 
						
							| 13 | 1 3 5 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑂 ‘ 𝑈 )  ∈  𝐿 ) | 
						
							| 14 | 7 12 13 | syl2anc | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑂 ‘ 𝑈 )  ∈  𝐿 ) | 
						
							| 15 | 5 2 | lsmcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿  ∧  ( 𝑂 ‘ 𝑈 )  ∈  𝐿 )  →  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  ∈  𝐿 ) | 
						
							| 16 | 9 10 14 15 | syl3anc | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  ∈  𝐿 ) | 
						
							| 17 | 1 5 | lssss | ⊢ ( ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  ∈  𝐿  →  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  ⊆  𝑉 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  ⊆  𝑉 ) | 
						
							| 19 |  | eqid | ⊢ ( norm ‘ 𝑊 )  =  ( norm ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 21 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 22 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 23 |  | simpl1 | ⊢ ( ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑥  ∈  𝑉 )  →  𝑊  ∈  ℂHil ) | 
						
							| 24 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑥  ∈  𝑉 )  →  𝑈  ∈  𝐿 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑥  ∈  𝑉 )  →  𝑥  ∈  𝑉 ) | 
						
							| 26 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑥  ∈  𝑉 )  →  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 27 | 1 19 20 21 22 5 23 24 25 4 2 3 26 | pjthlem2 | ⊢ ( ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑥  ∈  𝑉 )  →  𝑥  ∈  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) ) ) | 
						
							| 28 | 18 27 | eqelssd | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑈  ⊕  ( 𝑂 ‘ 𝑈 ) )  =  𝑉 ) |