| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjth.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
pjth.s |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
pjth.o |
⊢ 𝑂 = ( ocv ‘ 𝑊 ) |
| 4 |
|
pjth.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 5 |
|
pjth.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 6 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil ) |
| 8 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ LMod ) |
| 10 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ 𝐿 ) |
| 11 |
1 5
|
lssss |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ 𝑉 ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ 𝑉 ) |
| 13 |
1 3 5
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑈 ) ∈ 𝐿 ) |
| 14 |
7 12 13
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑂 ‘ 𝑈 ) ∈ 𝐿 ) |
| 15 |
5 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ( 𝑂 ‘ 𝑈 ) ∈ 𝐿 ) → ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ∈ 𝐿 ) |
| 16 |
9 10 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ∈ 𝐿 ) |
| 17 |
1 5
|
lssss |
⊢ ( ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ∈ 𝐿 → ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ⊆ 𝑉 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ⊆ 𝑉 ) |
| 19 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 22 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 23 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ ℂHil ) |
| 24 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑈 ∈ 𝐿 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 26 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) |
| 27 |
1 19 20 21 22 5 23 24 25 4 2 3 26
|
pjthlem2 |
⊢ ( ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) ) |
| 28 |
18 27
|
eqelssd |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ⊕ ( 𝑂 ‘ 𝑈 ) ) = 𝑉 ) |