| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjthlem.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | pjthlem.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | pjthlem.p |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | pjthlem.m |  |-  .- = ( -g ` W ) | 
						
							| 5 |  | pjthlem.h |  |-  ., = ( .i ` W ) | 
						
							| 6 |  | pjthlem.l |  |-  L = ( LSubSp ` W ) | 
						
							| 7 |  | pjthlem.1 |  |-  ( ph -> W e. CHil ) | 
						
							| 8 |  | pjthlem.2 |  |-  ( ph -> U e. L ) | 
						
							| 9 |  | pjthlem.4 |  |-  ( ph -> A e. V ) | 
						
							| 10 |  | pjthlem.5 |  |-  ( ph -> B e. U ) | 
						
							| 11 |  | pjthlem.7 |  |-  ( ph -> A. x e. U ( N ` A ) <_ ( N ` ( A .- x ) ) ) | 
						
							| 12 |  | pjthlem.8 |  |-  T = ( ( A ., B ) / ( ( B ., B ) + 1 ) ) | 
						
							| 13 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 14 | 7 13 | syl |  |-  ( ph -> W e. CPreHil ) | 
						
							| 15 | 1 6 | lssss |  |-  ( U e. L -> U C_ V ) | 
						
							| 16 | 8 15 | syl |  |-  ( ph -> U C_ V ) | 
						
							| 17 | 16 10 | sseldd |  |-  ( ph -> B e. V ) | 
						
							| 18 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) | 
						
							| 19 | 14 9 17 18 | syl3anc |  |-  ( ph -> ( A ., B ) e. CC ) | 
						
							| 20 | 19 | abscld |  |-  ( ph -> ( abs ` ( A ., B ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ph -> ( abs ` ( A ., B ) ) e. CC ) | 
						
							| 22 | 20 | resqcld |  |-  ( ph -> ( ( abs ` ( A ., B ) ) ^ 2 ) e. RR ) | 
						
							| 23 | 22 | renegcld |  |-  ( ph -> -u ( ( abs ` ( A ., B ) ) ^ 2 ) e. RR ) | 
						
							| 24 | 1 5 | reipcl |  |-  ( ( W e. CPreHil /\ B e. V ) -> ( B ., B ) e. RR ) | 
						
							| 25 | 14 17 24 | syl2anc |  |-  ( ph -> ( B ., B ) e. RR ) | 
						
							| 26 |  | 2re |  |-  2 e. RR | 
						
							| 27 |  | readdcl |  |-  ( ( ( B ., B ) e. RR /\ 2 e. RR ) -> ( ( B ., B ) + 2 ) e. RR ) | 
						
							| 28 | 25 26 27 | sylancl |  |-  ( ph -> ( ( B ., B ) + 2 ) e. RR ) | 
						
							| 29 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 30 |  | peano2re |  |-  ( ( B ., B ) e. RR -> ( ( B ., B ) + 1 ) e. RR ) | 
						
							| 31 | 25 30 | syl |  |-  ( ph -> ( ( B ., B ) + 1 ) e. RR ) | 
						
							| 32 | 1 5 | ipge0 |  |-  ( ( W e. CPreHil /\ B e. V ) -> 0 <_ ( B ., B ) ) | 
						
							| 33 | 14 17 32 | syl2anc |  |-  ( ph -> 0 <_ ( B ., B ) ) | 
						
							| 34 | 25 | ltp1d |  |-  ( ph -> ( B ., B ) < ( ( B ., B ) + 1 ) ) | 
						
							| 35 | 29 25 31 33 34 | lelttrd |  |-  ( ph -> 0 < ( ( B ., B ) + 1 ) ) | 
						
							| 36 | 31 | ltp1d |  |-  ( ph -> ( ( B ., B ) + 1 ) < ( ( ( B ., B ) + 1 ) + 1 ) ) | 
						
							| 37 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 38 | 37 | oveq2i |  |-  ( ( B ., B ) + 2 ) = ( ( B ., B ) + ( 1 + 1 ) ) | 
						
							| 39 | 25 | recnd |  |-  ( ph -> ( B ., B ) e. CC ) | 
						
							| 40 |  | ax-1cn |  |-  1 e. CC | 
						
							| 41 |  | addass |  |-  ( ( ( B ., B ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( B ., B ) + 1 ) + 1 ) = ( ( B ., B ) + ( 1 + 1 ) ) ) | 
						
							| 42 | 40 40 41 | mp3an23 |  |-  ( ( B ., B ) e. CC -> ( ( ( B ., B ) + 1 ) + 1 ) = ( ( B ., B ) + ( 1 + 1 ) ) ) | 
						
							| 43 | 39 42 | syl |  |-  ( ph -> ( ( ( B ., B ) + 1 ) + 1 ) = ( ( B ., B ) + ( 1 + 1 ) ) ) | 
						
							| 44 | 38 43 | eqtr4id |  |-  ( ph -> ( ( B ., B ) + 2 ) = ( ( ( B ., B ) + 1 ) + 1 ) ) | 
						
							| 45 | 36 44 | breqtrrd |  |-  ( ph -> ( ( B ., B ) + 1 ) < ( ( B ., B ) + 2 ) ) | 
						
							| 46 | 29 31 28 35 45 | lttrd |  |-  ( ph -> 0 < ( ( B ., B ) + 2 ) ) | 
						
							| 47 | 28 46 | elrpd |  |-  ( ph -> ( ( B ., B ) + 2 ) e. RR+ ) | 
						
							| 48 |  | oveq2 |  |-  ( x = ( T ( .s ` W ) B ) -> ( A .- x ) = ( A .- ( T ( .s ` W ) B ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( x = ( T ( .s ` W ) B ) -> ( N ` ( A .- x ) ) = ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 50 | 49 | breq2d |  |-  ( x = ( T ( .s ` W ) B ) -> ( ( N ` A ) <_ ( N ` ( A .- x ) ) <-> ( N ` A ) <_ ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ) ) | 
						
							| 51 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 52 | 14 51 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 53 |  | hlphl |  |-  ( W e. CHil -> W e. PreHil ) | 
						
							| 54 | 7 53 | syl |  |-  ( ph -> W e. PreHil ) | 
						
							| 55 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 56 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 57 | 55 5 1 56 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 58 | 54 9 17 57 | syl3anc |  |-  ( ph -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 59 | 55 56 | hlress |  |-  ( W e. CHil -> RR C_ ( Base ` ( Scalar ` W ) ) ) | 
						
							| 60 | 7 59 | syl |  |-  ( ph -> RR C_ ( Base ` ( Scalar ` W ) ) ) | 
						
							| 61 | 60 31 | sseldd |  |-  ( ph -> ( ( B ., B ) + 1 ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 62 | 25 33 | ge0p1rpd |  |-  ( ph -> ( ( B ., B ) + 1 ) e. RR+ ) | 
						
							| 63 | 62 | rpne0d |  |-  ( ph -> ( ( B ., B ) + 1 ) =/= 0 ) | 
						
							| 64 | 55 56 | cphdivcl |  |-  ( ( W e. CPreHil /\ ( ( A ., B ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( B ., B ) + 1 ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( B ., B ) + 1 ) =/= 0 ) ) -> ( ( A ., B ) / ( ( B ., B ) + 1 ) ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 65 | 14 58 61 63 64 | syl13anc |  |-  ( ph -> ( ( A ., B ) / ( ( B ., B ) + 1 ) ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 66 | 12 65 | eqeltrid |  |-  ( ph -> T e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 67 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 68 | 55 67 56 6 | lssvscl |  |-  ( ( ( W e. LMod /\ U e. L ) /\ ( T e. ( Base ` ( Scalar ` W ) ) /\ B e. U ) ) -> ( T ( .s ` W ) B ) e. U ) | 
						
							| 69 | 52 8 66 10 68 | syl22anc |  |-  ( ph -> ( T ( .s ` W ) B ) e. U ) | 
						
							| 70 | 50 11 69 | rspcdva |  |-  ( ph -> ( N ` A ) <_ ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 71 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 72 | 14 71 | syl |  |-  ( ph -> W e. NrmGrp ) | 
						
							| 73 | 1 2 | nmcl |  |-  ( ( W e. NrmGrp /\ A e. V ) -> ( N ` A ) e. RR ) | 
						
							| 74 | 72 9 73 | syl2anc |  |-  ( ph -> ( N ` A ) e. RR ) | 
						
							| 75 | 1 55 67 56 | lmodvscl |  |-  ( ( W e. LMod /\ T e. ( Base ` ( Scalar ` W ) ) /\ B e. V ) -> ( T ( .s ` W ) B ) e. V ) | 
						
							| 76 | 52 66 17 75 | syl3anc |  |-  ( ph -> ( T ( .s ` W ) B ) e. V ) | 
						
							| 77 | 1 4 | lmodvsubcl |  |-  ( ( W e. LMod /\ A e. V /\ ( T ( .s ` W ) B ) e. V ) -> ( A .- ( T ( .s ` W ) B ) ) e. V ) | 
						
							| 78 | 52 9 76 77 | syl3anc |  |-  ( ph -> ( A .- ( T ( .s ` W ) B ) ) e. V ) | 
						
							| 79 | 1 2 | nmcl |  |-  ( ( W e. NrmGrp /\ ( A .- ( T ( .s ` W ) B ) ) e. V ) -> ( N ` ( A .- ( T ( .s ` W ) B ) ) ) e. RR ) | 
						
							| 80 | 72 78 79 | syl2anc |  |-  ( ph -> ( N ` ( A .- ( T ( .s ` W ) B ) ) ) e. RR ) | 
						
							| 81 | 1 2 | nmge0 |  |-  ( ( W e. NrmGrp /\ A e. V ) -> 0 <_ ( N ` A ) ) | 
						
							| 82 | 72 9 81 | syl2anc |  |-  ( ph -> 0 <_ ( N ` A ) ) | 
						
							| 83 | 1 2 | nmge0 |  |-  ( ( W e. NrmGrp /\ ( A .- ( T ( .s ` W ) B ) ) e. V ) -> 0 <_ ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 84 | 72 78 83 | syl2anc |  |-  ( ph -> 0 <_ ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 85 | 74 80 82 84 | le2sqd |  |-  ( ph -> ( ( N ` A ) <_ ( N ` ( A .- ( T ( .s ` W ) B ) ) ) <-> ( ( N ` A ) ^ 2 ) <_ ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) ) ) | 
						
							| 86 | 70 85 | mpbid |  |-  ( ph -> ( ( N ` A ) ^ 2 ) <_ ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) ) | 
						
							| 87 | 80 | resqcld |  |-  ( ph -> ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) e. RR ) | 
						
							| 88 | 74 | resqcld |  |-  ( ph -> ( ( N ` A ) ^ 2 ) e. RR ) | 
						
							| 89 | 87 88 | subge0d |  |-  ( ph -> ( 0 <_ ( ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) - ( ( N ` A ) ^ 2 ) ) <-> ( ( N ` A ) ^ 2 ) <_ ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) ) ) | 
						
							| 90 | 86 89 | mpbird |  |-  ( ph -> 0 <_ ( ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) - ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 91 |  | 2z |  |-  2 e. ZZ | 
						
							| 92 |  | rpexpcl |  |-  ( ( ( ( B ., B ) + 1 ) e. RR+ /\ 2 e. ZZ ) -> ( ( ( B ., B ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 93 | 62 91 92 | sylancl |  |-  ( ph -> ( ( ( B ., B ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 94 | 22 93 | rerpdivcld |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) e. RR ) | 
						
							| 95 | 94 28 | remulcld |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) e. RR ) | 
						
							| 96 | 95 | recnd |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) e. CC ) | 
						
							| 97 | 96 | negcld |  |-  ( ph -> -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) e. CC ) | 
						
							| 98 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) | 
						
							| 99 | 14 9 9 98 | syl3anc |  |-  ( ph -> ( A ., A ) e. CC ) | 
						
							| 100 | 97 99 | pncand |  |-  ( ph -> ( ( -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) + ( A ., A ) ) - ( A ., A ) ) = -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) | 
						
							| 101 | 1 5 2 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .- ( T ( .s ` W ) B ) ) e. V ) -> ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) = ( ( A .- ( T ( .s ` W ) B ) ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 102 | 14 78 101 | syl2anc |  |-  ( ph -> ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) = ( ( A .- ( T ( .s ` W ) B ) ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) | 
						
							| 103 | 5 1 4 | cphsubdir |  |-  ( ( W e. CPreHil /\ ( A e. V /\ ( T ( .s ` W ) B ) e. V /\ ( A .- ( T ( .s ` W ) B ) ) e. V ) ) -> ( ( A .- ( T ( .s ` W ) B ) ) ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( A ., ( A .- ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) ) | 
						
							| 104 | 14 9 76 78 103 | syl13anc |  |-  ( ph -> ( ( A .- ( T ( .s ` W ) B ) ) ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( A ., ( A .- ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) ) | 
						
							| 105 | 5 1 4 | cphsubdi |  |-  ( ( W e. CPreHil /\ ( A e. V /\ A e. V /\ ( T ( .s ` W ) B ) e. V ) ) -> ( A ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( A ., A ) - ( A ., ( T ( .s ` W ) B ) ) ) ) | 
						
							| 106 | 14 9 9 76 105 | syl13anc |  |-  ( ph -> ( A ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( A ., A ) - ( A ., ( T ( .s ` W ) B ) ) ) ) | 
						
							| 107 | 106 | oveq1d |  |-  ( ph -> ( ( A ., ( A .- ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) = ( ( ( A ., A ) - ( A ., ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) ) | 
						
							| 108 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. V /\ ( T ( .s ` W ) B ) e. V ) -> ( A ., ( T ( .s ` W ) B ) ) e. CC ) | 
						
							| 109 | 14 9 76 108 | syl3anc |  |-  ( ph -> ( A ., ( T ( .s ` W ) B ) ) e. CC ) | 
						
							| 110 | 5 1 4 | cphsubdi |  |-  ( ( W e. CPreHil /\ ( ( T ( .s ` W ) B ) e. V /\ A e. V /\ ( T ( .s ` W ) B ) e. V ) ) -> ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( ( T ( .s ` W ) B ) ., A ) - ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) ) ) | 
						
							| 111 | 14 76 9 76 110 | syl13anc |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( ( T ( .s ` W ) B ) ., A ) - ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) ) ) | 
						
							| 112 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ ( T ( .s ` W ) B ) e. V /\ A e. V ) -> ( ( T ( .s ` W ) B ) ., A ) e. CC ) | 
						
							| 113 | 14 76 9 112 | syl3anc |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., A ) e. CC ) | 
						
							| 114 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ ( T ( .s ` W ) B ) e. V /\ ( T ( .s ` W ) B ) e. V ) -> ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) e. CC ) | 
						
							| 115 | 14 76 76 114 | syl3anc |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) e. CC ) | 
						
							| 116 | 113 115 | subcld |  |-  ( ph -> ( ( ( T ( .s ` W ) B ) ., A ) - ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) ) e. CC ) | 
						
							| 117 | 111 116 | eqeltrd |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) e. CC ) | 
						
							| 118 | 99 109 117 | subsub4d |  |-  ( ph -> ( ( ( A ., A ) - ( A ., ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) = ( ( A ., A ) - ( ( A ., ( T ( .s ` W ) B ) ) + ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) ) ) | 
						
							| 119 | 94 | recnd |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) e. CC ) | 
						
							| 120 | 31 | recnd |  |-  ( ph -> ( ( B ., B ) + 1 ) e. CC ) | 
						
							| 121 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 122 | 119 120 121 | adddid |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( ( B ., B ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) + ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. 1 ) ) ) | 
						
							| 123 | 44 | oveq2d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( ( B ., B ) + 1 ) + 1 ) ) ) | 
						
							| 124 | 5 1 55 56 67 | cphassr |  |-  ( ( W e. CPreHil /\ ( T e. ( Base ` ( Scalar ` W ) ) /\ A e. V /\ B e. V ) ) -> ( A ., ( T ( .s ` W ) B ) ) = ( ( * ` T ) x. ( A ., B ) ) ) | 
						
							| 125 | 14 66 9 17 124 | syl13anc |  |-  ( ph -> ( A ., ( T ( .s ` W ) B ) ) = ( ( * ` T ) x. ( A ., B ) ) ) | 
						
							| 126 | 19 120 63 | divcld |  |-  ( ph -> ( ( A ., B ) / ( ( B ., B ) + 1 ) ) e. CC ) | 
						
							| 127 | 12 126 | eqeltrid |  |-  ( ph -> T e. CC ) | 
						
							| 128 | 127 | cjcld |  |-  ( ph -> ( * ` T ) e. CC ) | 
						
							| 129 | 128 19 | mulcomd |  |-  ( ph -> ( ( * ` T ) x. ( A ., B ) ) = ( ( A ., B ) x. ( * ` T ) ) ) | 
						
							| 130 | 19 | cjcld |  |-  ( ph -> ( * ` ( A ., B ) ) e. CC ) | 
						
							| 131 | 19 130 120 63 | divassd |  |-  ( ph -> ( ( ( A ., B ) x. ( * ` ( A ., B ) ) ) / ( ( B ., B ) + 1 ) ) = ( ( A ., B ) x. ( ( * ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) ) | 
						
							| 132 | 19 | absvalsqd |  |-  ( ph -> ( ( abs ` ( A ., B ) ) ^ 2 ) = ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) | 
						
							| 133 | 132 | oveq1d |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( B ., B ) + 1 ) ) = ( ( ( A ., B ) x. ( * ` ( A ., B ) ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 134 | 12 | fveq2i |  |-  ( * ` T ) = ( * ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 135 | 19 120 63 | cjdivd |  |-  ( ph -> ( * ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) = ( ( * ` ( A ., B ) ) / ( * ` ( ( B ., B ) + 1 ) ) ) ) | 
						
							| 136 | 31 | cjred |  |-  ( ph -> ( * ` ( ( B ., B ) + 1 ) ) = ( ( B ., B ) + 1 ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ph -> ( ( * ` ( A ., B ) ) / ( * ` ( ( B ., B ) + 1 ) ) ) = ( ( * ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 138 | 135 137 | eqtrd |  |-  ( ph -> ( * ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) = ( ( * ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 139 | 134 138 | eqtrid |  |-  ( ph -> ( * ` T ) = ( ( * ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ph -> ( ( A ., B ) x. ( * ` T ) ) = ( ( A ., B ) x. ( ( * ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) ) | 
						
							| 141 | 131 133 140 | 3eqtr4rd |  |-  ( ph -> ( ( A ., B ) x. ( * ` T ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 142 | 125 129 141 | 3eqtrd |  |-  ( ph -> ( A ., ( T ( .s ` W ) B ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 143 | 22 | recnd |  |-  ( ph -> ( ( abs ` ( A ., B ) ) ^ 2 ) e. CC ) | 
						
							| 144 | 143 120 | mulcomd |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 1 ) ) = ( ( ( B ., B ) + 1 ) x. ( ( abs ` ( A ., B ) ) ^ 2 ) ) ) | 
						
							| 145 | 120 | sqvald |  |-  ( ph -> ( ( ( B ., B ) + 1 ) ^ 2 ) = ( ( ( B ., B ) + 1 ) x. ( ( B ., B ) + 1 ) ) ) | 
						
							| 146 | 144 145 | oveq12d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 1 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) = ( ( ( ( B ., B ) + 1 ) x. ( ( abs ` ( A ., B ) ) ^ 2 ) ) / ( ( ( B ., B ) + 1 ) x. ( ( B ., B ) + 1 ) ) ) ) | 
						
							| 147 | 143 120 120 63 63 | divcan5d |  |-  ( ph -> ( ( ( ( B ., B ) + 1 ) x. ( ( abs ` ( A ., B ) ) ^ 2 ) ) / ( ( ( B ., B ) + 1 ) x. ( ( B ., B ) + 1 ) ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 148 | 146 147 | eqtr2d |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( B ., B ) + 1 ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 1 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) ) | 
						
							| 149 | 93 | rpcnd |  |-  ( ph -> ( ( ( B ., B ) + 1 ) ^ 2 ) e. CC ) | 
						
							| 150 | 93 | rpne0d |  |-  ( ph -> ( ( ( B ., B ) + 1 ) ^ 2 ) =/= 0 ) | 
						
							| 151 | 143 120 149 150 | div23d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 1 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) ) | 
						
							| 152 | 142 148 151 | 3eqtrd |  |-  ( ph -> ( A ., ( T ( .s ` W ) B ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) ) | 
						
							| 153 | 94 31 | remulcld |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) e. RR ) | 
						
							| 154 | 152 153 | eqeltrd |  |-  ( ph -> ( A ., ( T ( .s ` W ) B ) ) e. RR ) | 
						
							| 155 | 154 | cjred |  |-  ( ph -> ( * ` ( A ., ( T ( .s ` W ) B ) ) ) = ( A ., ( T ( .s ` W ) B ) ) ) | 
						
							| 156 | 5 1 | cphipcj |  |-  ( ( W e. CPreHil /\ A e. V /\ ( T ( .s ` W ) B ) e. V ) -> ( * ` ( A ., ( T ( .s ` W ) B ) ) ) = ( ( T ( .s ` W ) B ) ., A ) ) | 
						
							| 157 | 14 9 76 156 | syl3anc |  |-  ( ph -> ( * ` ( A ., ( T ( .s ` W ) B ) ) ) = ( ( T ( .s ` W ) B ) ., A ) ) | 
						
							| 158 | 155 157 152 | 3eqtr3d |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., A ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) ) | 
						
							| 159 | 5 1 55 56 67 | cph2ass |  |-  ( ( W e. CPreHil /\ ( T e. ( Base ` ( Scalar ` W ) ) /\ T e. ( Base ` ( Scalar ` W ) ) ) /\ ( B e. V /\ B e. V ) ) -> ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) = ( ( T x. ( * ` T ) ) x. ( B ., B ) ) ) | 
						
							| 160 | 14 66 66 17 17 159 | syl122anc |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) = ( ( T x. ( * ` T ) ) x. ( B ., B ) ) ) | 
						
							| 161 | 12 | fveq2i |  |-  ( abs ` T ) = ( abs ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 162 | 19 120 63 | absdivd |  |-  ( ph -> ( abs ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) = ( ( abs ` ( A ., B ) ) / ( abs ` ( ( B ., B ) + 1 ) ) ) ) | 
						
							| 163 | 62 | rpge0d |  |-  ( ph -> 0 <_ ( ( B ., B ) + 1 ) ) | 
						
							| 164 | 31 163 | absidd |  |-  ( ph -> ( abs ` ( ( B ., B ) + 1 ) ) = ( ( B ., B ) + 1 ) ) | 
						
							| 165 | 164 | oveq2d |  |-  ( ph -> ( ( abs ` ( A ., B ) ) / ( abs ` ( ( B ., B ) + 1 ) ) ) = ( ( abs ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 166 | 162 165 | eqtrd |  |-  ( ph -> ( abs ` ( ( A ., B ) / ( ( B ., B ) + 1 ) ) ) = ( ( abs ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 167 | 161 166 | eqtrid |  |-  ( ph -> ( abs ` T ) = ( ( abs ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ) | 
						
							| 168 | 167 | oveq1d |  |-  ( ph -> ( ( abs ` T ) ^ 2 ) = ( ( ( abs ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ^ 2 ) ) | 
						
							| 169 | 127 | absvalsqd |  |-  ( ph -> ( ( abs ` T ) ^ 2 ) = ( T x. ( * ` T ) ) ) | 
						
							| 170 | 21 120 63 | sqdivd |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) / ( ( B ., B ) + 1 ) ) ^ 2 ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) ) | 
						
							| 171 | 168 169 170 | 3eqtr3d |  |-  ( ph -> ( T x. ( * ` T ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) ) | 
						
							| 172 | 171 | oveq1d |  |-  ( ph -> ( ( T x. ( * ` T ) ) x. ( B ., B ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( B ., B ) ) ) | 
						
							| 173 | 160 172 | eqtrd |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( B ., B ) ) ) | 
						
							| 174 | 158 173 | oveq12d |  |-  ( ph -> ( ( ( T ( .s ` W ) B ) ., A ) - ( ( T ( .s ` W ) B ) ., ( T ( .s ` W ) B ) ) ) = ( ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( B ., B ) ) ) ) | 
						
							| 175 |  | pncan2 |  |-  ( ( ( B ., B ) e. CC /\ 1 e. CC ) -> ( ( ( B ., B ) + 1 ) - ( B ., B ) ) = 1 ) | 
						
							| 176 | 39 40 175 | sylancl |  |-  ( ph -> ( ( ( B ., B ) + 1 ) - ( B ., B ) ) = 1 ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( ( B ., B ) + 1 ) - ( B ., B ) ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. 1 ) ) | 
						
							| 178 | 119 120 39 | subdid |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( ( B ., B ) + 1 ) - ( B ., B ) ) ) = ( ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( B ., B ) ) ) ) | 
						
							| 179 | 177 178 | eqtr3d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. 1 ) = ( ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( B ., B ) ) ) ) | 
						
							| 180 | 174 111 179 | 3eqtr4d |  |-  ( ph -> ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. 1 ) ) | 
						
							| 181 | 152 180 | oveq12d |  |-  ( ph -> ( ( A ., ( T ( .s ` W ) B ) ) + ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) = ( ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 1 ) ) + ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. 1 ) ) ) | 
						
							| 182 | 122 123 181 | 3eqtr4rd |  |-  ( ph -> ( ( A ., ( T ( .s ` W ) B ) ) + ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) | 
						
							| 183 | 182 | oveq2d |  |-  ( ph -> ( ( A ., A ) - ( ( A ., ( T ( .s ` W ) B ) ) + ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) ) = ( ( A ., A ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) ) | 
						
							| 184 | 107 118 183 | 3eqtrd |  |-  ( ph -> ( ( A ., ( A .- ( T ( .s ` W ) B ) ) ) - ( ( T ( .s ` W ) B ) ., ( A .- ( T ( .s ` W ) B ) ) ) ) = ( ( A ., A ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) ) | 
						
							| 185 | 102 104 184 | 3eqtrd |  |-  ( ph -> ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) = ( ( A ., A ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) ) | 
						
							| 186 | 99 96 | negsubd |  |-  ( ph -> ( ( A ., A ) + -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) = ( ( A ., A ) - ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) ) | 
						
							| 187 | 99 97 | addcomd |  |-  ( ph -> ( ( A ., A ) + -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) = ( -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) + ( A ., A ) ) ) | 
						
							| 188 | 185 186 187 | 3eqtr2d |  |-  ( ph -> ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) = ( -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) + ( A ., A ) ) ) | 
						
							| 189 | 1 5 2 | nmsq |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 190 | 14 9 189 | syl2anc |  |-  ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 191 | 188 190 | oveq12d |  |-  ( ph -> ( ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) - ( ( N ` A ) ^ 2 ) ) = ( ( -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) + ( A ., A ) ) - ( A ., A ) ) ) | 
						
							| 192 | 28 | renegcld |  |-  ( ph -> -u ( ( B ., B ) + 2 ) e. RR ) | 
						
							| 193 | 192 | recnd |  |-  ( ph -> -u ( ( B ., B ) + 2 ) e. CC ) | 
						
							| 194 | 143 193 149 150 | div23d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. -u ( ( B ., B ) + 2 ) ) ) | 
						
							| 195 | 28 | recnd |  |-  ( ph -> ( ( B ., B ) + 2 ) e. CC ) | 
						
							| 196 | 119 195 | mulneg2d |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. -u ( ( B ., B ) + 2 ) ) = -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) | 
						
							| 197 | 194 196 | eqtrd |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) = -u ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) x. ( ( B ., B ) + 2 ) ) ) | 
						
							| 198 | 100 191 197 | 3eqtr4rd |  |-  ( ph -> ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) = ( ( ( N ` ( A .- ( T ( .s ` W ) B ) ) ) ^ 2 ) - ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 199 | 90 198 | breqtrrd |  |-  ( ph -> 0 <_ ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) ) | 
						
							| 200 | 22 192 | remulcld |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) e. RR ) | 
						
							| 201 | 200 93 | ge0divd |  |-  ( ph -> ( 0 <_ ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) <-> 0 <_ ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) / ( ( ( B ., B ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 202 | 199 201 | mpbird |  |-  ( ph -> 0 <_ ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) ) | 
						
							| 203 |  | mulneg12 |  |-  ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) e. CC /\ ( ( B ., B ) + 2 ) e. CC ) -> ( -u ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 2 ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) ) | 
						
							| 204 | 143 195 203 | syl2anc |  |-  ( ph -> ( -u ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 2 ) ) = ( ( ( abs ` ( A ., B ) ) ^ 2 ) x. -u ( ( B ., B ) + 2 ) ) ) | 
						
							| 205 | 202 204 | breqtrrd |  |-  ( ph -> 0 <_ ( -u ( ( abs ` ( A ., B ) ) ^ 2 ) x. ( ( B ., B ) + 2 ) ) ) | 
						
							| 206 | 23 47 205 | prodge0ld |  |-  ( ph -> 0 <_ -u ( ( abs ` ( A ., B ) ) ^ 2 ) ) | 
						
							| 207 | 22 | le0neg1d |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) <_ 0 <-> 0 <_ -u ( ( abs ` ( A ., B ) ) ^ 2 ) ) ) | 
						
							| 208 | 206 207 | mpbird |  |-  ( ph -> ( ( abs ` ( A ., B ) ) ^ 2 ) <_ 0 ) | 
						
							| 209 | 20 | sqge0d |  |-  ( ph -> 0 <_ ( ( abs ` ( A ., B ) ) ^ 2 ) ) | 
						
							| 210 |  | 0re |  |-  0 e. RR | 
						
							| 211 |  | letri3 |  |-  ( ( ( ( abs ` ( A ., B ) ) ^ 2 ) e. RR /\ 0 e. RR ) -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( A ., B ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( A ., B ) ) ^ 2 ) ) ) ) | 
						
							| 212 | 22 210 211 | sylancl |  |-  ( ph -> ( ( ( abs ` ( A ., B ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( A ., B ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( A ., B ) ) ^ 2 ) ) ) ) | 
						
							| 213 | 208 209 212 | mpbir2and |  |-  ( ph -> ( ( abs ` ( A ., B ) ) ^ 2 ) = 0 ) | 
						
							| 214 | 21 213 | sqeq0d |  |-  ( ph -> ( abs ` ( A ., B ) ) = 0 ) | 
						
							| 215 | 19 214 | abs00d |  |-  ( ph -> ( A ., B ) = 0 ) |