| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmf.x |
|- X = ( Base ` G ) |
| 2 |
|
nmf.n |
|- N = ( norm ` G ) |
| 3 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
1 4
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 6 |
3 5
|
syl |
|- ( G e. NrmGrp -> ( 0g ` G ) e. X ) |
| 7 |
6
|
adantr |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( 0g ` G ) e. X ) |
| 8 |
|
ngpxms |
|- ( G e. NrmGrp -> G e. *MetSp ) |
| 9 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 10 |
1 9
|
xmsge0 |
|- ( ( G e. *MetSp /\ A e. X /\ ( 0g ` G ) e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 11 |
8 10
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ ( 0g ` G ) e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 12 |
7 11
|
mpd3an3 |
|- ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 13 |
2 1 4 9
|
nmval |
|- ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 14 |
13
|
adantl |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 15 |
12 14
|
breqtrrd |
|- ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( N ` A ) ) |