Metamath Proof Explorer


Theorem cphsubdi

Description: Distributive law for inner product subtraction. Complex version of ipsubdi . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h ,˙=𝑖W
cphipcj.v V=BaseW
cphsubdir.m -˙=-W
Assertion cphsubdi WCPreHilAVBVCVA,˙B-˙C=A,˙BA,˙C

Proof

Step Hyp Ref Expression
1 cphipcj.h ,˙=𝑖W
2 cphipcj.v V=BaseW
3 cphsubdir.m -˙=-W
4 cphphl WCPreHilWPreHil
5 eqid ScalarW=ScalarW
6 eqid -ScalarW=-ScalarW
7 5 1 2 3 6 ipsubdi WPreHilAVBVCVA,˙B-˙C=A,˙B-ScalarWA,˙C
8 4 7 sylan WCPreHilAVBVCVA,˙B-˙C=A,˙B-ScalarWA,˙C
9 cphclm WCPreHilWCMod
10 9 adantr WCPreHilAVBVCVWCMod
11 4 adantr WCPreHilAVBVCVWPreHil
12 simpr1 WCPreHilAVBVCVAV
13 simpr2 WCPreHilAVBVCVBV
14 eqid BaseScalarW=BaseScalarW
15 5 1 2 14 ipcl WPreHilAVBVA,˙BBaseScalarW
16 11 12 13 15 syl3anc WCPreHilAVBVCVA,˙BBaseScalarW
17 simpr3 WCPreHilAVBVCVCV
18 5 1 2 14 ipcl WPreHilAVCVA,˙CBaseScalarW
19 11 12 17 18 syl3anc WCPreHilAVBVCVA,˙CBaseScalarW
20 5 14 clmsub WCModA,˙BBaseScalarWA,˙CBaseScalarWA,˙BA,˙C=A,˙B-ScalarWA,˙C
21 10 16 19 20 syl3anc WCPreHilAVBVCVA,˙BA,˙C=A,˙B-ScalarWA,˙C
22 8 21 eqtr4d WCPreHilAVBVCVA,˙B-˙C=A,˙BA,˙C