Metamath Proof Explorer


Theorem minvec

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X = Base U
minvec.m - ˙ = - U
minvec.n N = norm U
minvec.u φ U CPreHil
minvec.y φ Y LSubSp U
minvec.w φ U 𝑠 Y CMetSp
minvec.a φ A X
Assertion minvec φ ∃! x Y y Y N A - ˙ x N A - ˙ y

Proof

Step Hyp Ref Expression
1 minvec.x X = Base U
2 minvec.m - ˙ = - U
3 minvec.n N = norm U
4 minvec.u φ U CPreHil
5 minvec.y φ Y LSubSp U
6 minvec.w φ U 𝑠 Y CMetSp
7 minvec.a φ A X
8 eqid TopOpen U = TopOpen U
9 oveq2 j = y A - ˙ j = A - ˙ y
10 9 fveq2d j = y N A - ˙ j = N A - ˙ y
11 10 cbvmptv j Y N A - ˙ j = y Y N A - ˙ y
12 11 rneqi ran j Y N A - ˙ j = ran y Y N A - ˙ y
13 eqid sup ran j Y N A - ˙ j < = sup ran j Y N A - ˙ j <
14 eqid dist U X × X = dist U X × X
15 1 2 3 4 5 6 7 8 12 13 14 minveclem7 φ ∃! x Y y Y N A - ˙ x N A - ˙ y