Metamath Proof Explorer


Theorem minvec

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
Assertion minvec φ∃!xYyYNA-˙xNA-˙y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 eqid TopOpenU=TopOpenU
9 oveq2 j=yA-˙j=A-˙y
10 9 fveq2d j=yNA-˙j=NA-˙y
11 10 cbvmptv jYNA-˙j=yYNA-˙y
12 11 rneqi ranjYNA-˙j=ranyYNA-˙y
13 eqid supranjYNA-˙j<=supranjYNA-˙j<
14 eqid distUX×X=distUX×X
15 1 2 3 4 5 6 7 8 12 13 14 minveclem7 φ∃!xYyYNA-˙xNA-˙y