Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 3-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minvec.x | |- X = ( Base ` U ) | |
| minvec.m | |- .- = ( -g ` U ) | ||
| minvec.n | |- N = ( norm ` U ) | ||
| minvec.u | |- ( ph -> U e. CPreHil ) | ||
| minvec.y | |- ( ph -> Y e. ( LSubSp ` U ) ) | ||
| minvec.w | |- ( ph -> ( U |`s Y ) e. CMetSp ) | ||
| minvec.a | |- ( ph -> A e. X ) | ||
| Assertion | minvec | |- ( ph -> E! x e. Y A. y e. Y ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | minvec.x | |- X = ( Base ` U ) | |
| 2 | minvec.m | |- .- = ( -g ` U ) | |
| 3 | minvec.n | |- N = ( norm ` U ) | |
| 4 | minvec.u | |- ( ph -> U e. CPreHil ) | |
| 5 | minvec.y | |- ( ph -> Y e. ( LSubSp ` U ) ) | |
| 6 | minvec.w | |- ( ph -> ( U |`s Y ) e. CMetSp ) | |
| 7 | minvec.a | |- ( ph -> A e. X ) | |
| 8 | eqid | |- ( TopOpen ` U ) = ( TopOpen ` U ) | |
| 9 | oveq2 | |- ( j = y -> ( A .- j ) = ( A .- y ) ) | |
| 10 | 9 | fveq2d | |- ( j = y -> ( N ` ( A .- j ) ) = ( N ` ( A .- y ) ) ) | 
| 11 | 10 | cbvmptv | |- ( j e. Y |-> ( N ` ( A .- j ) ) ) = ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
| 12 | 11 | rneqi | |- ran ( j e. Y |-> ( N ` ( A .- j ) ) ) = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
| 13 | eqid | |- inf ( ran ( j e. Y |-> ( N ` ( A .- j ) ) ) , RR , < ) = inf ( ran ( j e. Y |-> ( N ` ( A .- j ) ) ) , RR , < ) | |
| 14 | eqid | |- ( ( dist ` U ) |` ( X X. X ) ) = ( ( dist ` U ) |` ( X X. X ) ) | |
| 15 | 1 2 3 4 5 6 7 8 12 13 14 | minveclem7 | |- ( ph -> E! x e. Y A. y e. Y ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) ) |