Metamath Proof Explorer


Theorem minvec

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x
|- X = ( Base ` U )
minvec.m
|- .- = ( -g ` U )
minvec.n
|- N = ( norm ` U )
minvec.u
|- ( ph -> U e. CPreHil )
minvec.y
|- ( ph -> Y e. ( LSubSp ` U ) )
minvec.w
|- ( ph -> ( U |`s Y ) e. CMetSp )
minvec.a
|- ( ph -> A e. X )
Assertion minvec
|- ( ph -> E! x e. Y A. y e. Y ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) )

Proof

Step Hyp Ref Expression
1 minvec.x
 |-  X = ( Base ` U )
2 minvec.m
 |-  .- = ( -g ` U )
3 minvec.n
 |-  N = ( norm ` U )
4 minvec.u
 |-  ( ph -> U e. CPreHil )
5 minvec.y
 |-  ( ph -> Y e. ( LSubSp ` U ) )
6 minvec.w
 |-  ( ph -> ( U |`s Y ) e. CMetSp )
7 minvec.a
 |-  ( ph -> A e. X )
8 eqid
 |-  ( TopOpen ` U ) = ( TopOpen ` U )
9 oveq2
 |-  ( j = y -> ( A .- j ) = ( A .- y ) )
10 9 fveq2d
 |-  ( j = y -> ( N ` ( A .- j ) ) = ( N ` ( A .- y ) ) )
11 10 cbvmptv
 |-  ( j e. Y |-> ( N ` ( A .- j ) ) ) = ( y e. Y |-> ( N ` ( A .- y ) ) )
12 11 rneqi
 |-  ran ( j e. Y |-> ( N ` ( A .- j ) ) ) = ran ( y e. Y |-> ( N ` ( A .- y ) ) )
13 eqid
 |-  inf ( ran ( j e. Y |-> ( N ` ( A .- j ) ) ) , RR , < ) = inf ( ran ( j e. Y |-> ( N ` ( A .- j ) ) ) , RR , < )
14 eqid
 |-  ( ( dist ` U ) |` ( X X. X ) ) = ( ( dist ` U ) |` ( X X. X ) )
15 1 2 3 4 5 6 7 8 12 13 14 minveclem7
 |-  ( ph -> E! x e. Y A. y e. Y ( N ` ( A .- x ) ) <_ ( N ` ( A .- y ) ) )