| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
| 2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
| 4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
| 5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
| 7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
eqid |
⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝐴 − 𝑗 ) = ( 𝐴 − 𝑦 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑗 = 𝑦 → ( 𝑁 ‘ ( 𝐴 − 𝑗 ) ) = ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑗 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
| 12 |
11
|
rneqi |
⊢ ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑗 ) ) ) = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
| 13 |
|
eqid |
⊢ inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑗 ) ) ) , ℝ , < ) |
| 14 |
|
eqid |
⊢ ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 15 |
1 2 3 4 5 6 7 8 12 13 14
|
minveclem7 |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |