| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | eqid | ⊢ ( TopOpen ‘ 𝑈 )  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑗  =  𝑦  →  ( 𝐴  −  𝑗 )  =  ( 𝐴  −  𝑦 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑗  =  𝑦  →  ( 𝑁 ‘ ( 𝐴  −  𝑗 ) )  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 11 | 10 | cbvmptv | ⊢ ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑗 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 12 | 11 | rneqi | ⊢ ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑗 ) ) )  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 13 |  | eqid | ⊢ inf ( ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑗 ) ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑗 ) ) ) ,  ℝ ,   <  ) | 
						
							| 14 |  | eqid | ⊢ ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) )  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 12 13 14 | minveclem7 | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) |