Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
β’ π = ( Base β π ) |
2 |
|
minvec.m |
β’ β = ( -g β π ) |
3 |
|
minvec.n |
β’ π = ( norm β π ) |
4 |
|
minvec.u |
β’ ( π β π β βPreHil ) |
5 |
|
minvec.y |
β’ ( π β π β ( LSubSp β π ) ) |
6 |
|
minvec.w |
β’ ( π β ( π βΎs π ) β CMetSp ) |
7 |
|
minvec.a |
β’ ( π β π΄ β π ) |
8 |
|
eqid |
β’ ( TopOpen β π ) = ( TopOpen β π ) |
9 |
|
oveq2 |
β’ ( π = π¦ β ( π΄ β π ) = ( π΄ β π¦ ) ) |
10 |
9
|
fveq2d |
β’ ( π = π¦ β ( π β ( π΄ β π ) ) = ( π β ( π΄ β π¦ ) ) ) |
11 |
10
|
cbvmptv |
β’ ( π β π β¦ ( π β ( π΄ β π ) ) ) = ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
12 |
11
|
rneqi |
β’ ran ( π β π β¦ ( π β ( π΄ β π ) ) ) = ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
13 |
|
eqid |
β’ inf ( ran ( π β π β¦ ( π β ( π΄ β π ) ) ) , β , < ) = inf ( ran ( π β π β¦ ( π β ( π΄ β π ) ) ) , β , < ) |
14 |
|
eqid |
β’ ( ( dist β π ) βΎ ( π Γ π ) ) = ( ( dist β π ) βΎ ( π Γ π ) ) |
15 |
1 2 3 4 5 6 7 8 12 13 14
|
minveclem7 |
β’ ( π β β! π₯ β π β π¦ β π ( π β ( π΄ β π₯ ) ) β€ ( π β ( π΄ β π¦ ) ) ) |