Metamath Proof Explorer


Theorem minvec

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x ⊒ 𝑋 = ( Base β€˜ π‘ˆ )
minvec.m ⊒ βˆ’ = ( -g β€˜ π‘ˆ )
minvec.n ⊒ 𝑁 = ( norm β€˜ π‘ˆ )
minvec.u ⊒ ( πœ‘ β†’ π‘ˆ ∈ β„‚PreHil )
minvec.y ⊒ ( πœ‘ β†’ π‘Œ ∈ ( LSubSp β€˜ π‘ˆ ) )
minvec.w ⊒ ( πœ‘ β†’ ( π‘ˆ β†Ύs π‘Œ ) ∈ CMetSp )
minvec.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
Assertion minvec ( πœ‘ β†’ βˆƒ! π‘₯ ∈ π‘Œ βˆ€ 𝑦 ∈ π‘Œ ( 𝑁 β€˜ ( 𝐴 βˆ’ π‘₯ ) ) ≀ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 minvec.x ⊒ 𝑋 = ( Base β€˜ π‘ˆ )
2 minvec.m ⊒ βˆ’ = ( -g β€˜ π‘ˆ )
3 minvec.n ⊒ 𝑁 = ( norm β€˜ π‘ˆ )
4 minvec.u ⊒ ( πœ‘ β†’ π‘ˆ ∈ β„‚PreHil )
5 minvec.y ⊒ ( πœ‘ β†’ π‘Œ ∈ ( LSubSp β€˜ π‘ˆ ) )
6 minvec.w ⊒ ( πœ‘ β†’ ( π‘ˆ β†Ύs π‘Œ ) ∈ CMetSp )
7 minvec.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
8 eqid ⊒ ( TopOpen β€˜ π‘ˆ ) = ( TopOpen β€˜ π‘ˆ )
9 oveq2 ⊒ ( 𝑗 = 𝑦 β†’ ( 𝐴 βˆ’ 𝑗 ) = ( 𝐴 βˆ’ 𝑦 ) )
10 9 fveq2d ⊒ ( 𝑗 = 𝑦 β†’ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑗 ) ) = ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )
11 10 cbvmptv ⊒ ( 𝑗 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑗 ) ) ) = ( 𝑦 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )
12 11 rneqi ⊒ ran ( 𝑗 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑗 ) ) ) = ran ( 𝑦 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )
13 eqid ⊒ inf ( ran ( 𝑗 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑗 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑗 ) ) ) , ℝ , < )
14 eqid ⊒ ( ( dist β€˜ π‘ˆ ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) = ( ( dist β€˜ π‘ˆ ) β†Ύ ( 𝑋 Γ— 𝑋 ) )
15 1 2 3 4 5 6 7 8 12 13 14 minveclem7 ⊒ ( πœ‘ β†’ βˆƒ! π‘₯ ∈ π‘Œ βˆ€ 𝑦 ∈ π‘Œ ( 𝑁 β€˜ ( 𝐴 βˆ’ π‘₯ ) ) ≀ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )