Metamath Proof Explorer


Theorem minveclem7

Description: Lemma for minvec . Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
Assertion minveclem7 φ∃!xYyYNA-˙xNA-˙y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 1 2 3 4 5 6 7 8 9 10 11 minveclem5 φxYyYNA-˙xNA-˙y
13 4 ad2antrr φxYwYADx2S2+0ADw2S2+0UCPreHil
14 5 ad2antrr φxYwYADx2S2+0ADw2S2+0YLSubSpU
15 6 ad2antrr φxYwYADx2S2+0ADw2S2+0U𝑠YCMetSp
16 7 ad2antrr φxYwYADx2S2+0ADw2S2+0AX
17 0re 0
18 17 a1i φxYwYADx2S2+0ADw2S2+00
19 0le0 00
20 19 a1i φxYwYADx2S2+0ADw2S2+000
21 simplrl φxYwYADx2S2+0ADw2S2+0xY
22 simplrr φxYwYADx2S2+0ADw2S2+0wY
23 simprl φxYwYADx2S2+0ADw2S2+0ADx2S2+0
24 simprr φxYwYADx2S2+0ADw2S2+0ADw2S2+0
25 1 2 3 13 14 15 16 8 9 10 11 18 20 21 22 23 24 minveclem2 φxYwYADx2S2+0ADw2S2+0xDw240
26 25 ex φxYwYADx2S2+0ADw2S2+0xDw240
27 1 2 3 4 5 6 7 8 9 10 11 minveclem6 φxYADx2S2+0yYNA-˙xNA-˙y
28 27 adantrr φxYwYADx2S2+0yYNA-˙xNA-˙y
29 1 2 3 4 5 6 7 8 9 10 11 minveclem6 φwYADw2S2+0yYNA-˙wNA-˙y
30 29 adantrl φxYwYADw2S2+0yYNA-˙wNA-˙y
31 28 30 anbi12d φxYwYADx2S2+0ADw2S2+0yYNA-˙xNA-˙yyYNA-˙wNA-˙y
32 4cn 4
33 32 mul01i 40=0
34 33 breq2i xDw240xDw20
35 cphngp UCPreHilUNrmGrp
36 ngpms UNrmGrpUMetSp
37 4 35 36 3syl φUMetSp
38 37 adantr φxYwYUMetSp
39 1 11 msmet UMetSpDMetX
40 38 39 syl φxYwYDMetX
41 eqid LSubSpU=LSubSpU
42 1 41 lssss YLSubSpUYX
43 5 42 syl φYX
44 43 adantr φxYwYYX
45 simprl φxYwYxY
46 44 45 sseldd φxYwYxX
47 simprr φxYwYwY
48 44 47 sseldd φxYwYwX
49 metcl DMetXxXwXxDw
50 40 46 48 49 syl3anc φxYwYxDw
51 50 sqge0d φxYwY0xDw2
52 51 biantrud φxYwYxDw20xDw200xDw2
53 50 resqcld φxYwYxDw2
54 letri3 xDw20xDw2=0xDw200xDw2
55 53 17 54 sylancl φxYwYxDw2=0xDw200xDw2
56 50 recnd φxYwYxDw
57 sqeq0 xDwxDw2=0xDw=0
58 56 57 syl φxYwYxDw2=0xDw=0
59 meteq0 DMetXxXwXxDw=0x=w
60 40 46 48 59 syl3anc φxYwYxDw=0x=w
61 58 60 bitrd φxYwYxDw2=0x=w
62 52 55 61 3bitr2d φxYwYxDw20x=w
63 34 62 bitrid φxYwYxDw240x=w
64 26 31 63 3imtr3d φxYwYyYNA-˙xNA-˙yyYNA-˙wNA-˙yx=w
65 64 ralrimivva φxYwYyYNA-˙xNA-˙yyYNA-˙wNA-˙yx=w
66 oveq2 x=wA-˙x=A-˙w
67 66 fveq2d x=wNA-˙x=NA-˙w
68 67 breq1d x=wNA-˙xNA-˙yNA-˙wNA-˙y
69 68 ralbidv x=wyYNA-˙xNA-˙yyYNA-˙wNA-˙y
70 69 reu4 ∃!xYyYNA-˙xNA-˙yxYyYNA-˙xNA-˙yxYwYyYNA-˙xNA-˙yyYNA-˙wNA-˙yx=w
71 12 65 70 sylanbrc φ∃!xYyYNA-˙xNA-˙y