| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x |  | 
						
							| 2 |  | minvec.m |  | 
						
							| 3 |  | minvec.n |  | 
						
							| 4 |  | minvec.u |  | 
						
							| 5 |  | minvec.y |  | 
						
							| 6 |  | minvec.w |  | 
						
							| 7 |  | minvec.a |  | 
						
							| 8 |  | minvec.j |  | 
						
							| 9 |  | minvec.r |  | 
						
							| 10 |  | minvec.s |  | 
						
							| 11 |  | minvec.d |  | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | minveclem5 |  | 
						
							| 13 | 4 | ad2antrr |  | 
						
							| 14 | 5 | ad2antrr |  | 
						
							| 15 | 6 | ad2antrr |  | 
						
							| 16 | 7 | ad2antrr |  | 
						
							| 17 |  | 0re |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | 0le0 |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | simplrl |  | 
						
							| 22 |  | simplrr |  | 
						
							| 23 |  | simprl |  | 
						
							| 24 |  | simprr |  | 
						
							| 25 | 1 2 3 13 14 15 16 8 9 10 11 18 20 21 22 23 24 | minveclem2 |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 | minveclem6 |  | 
						
							| 28 | 27 | adantrr |  | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 | minveclem6 |  | 
						
							| 30 | 29 | adantrl |  | 
						
							| 31 | 28 30 | anbi12d |  | 
						
							| 32 |  | 4cn |  | 
						
							| 33 | 32 | mul01i |  | 
						
							| 34 | 33 | breq2i |  | 
						
							| 35 |  | cphngp |  | 
						
							| 36 |  | ngpms |  | 
						
							| 37 | 4 35 36 | 3syl |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 1 11 | msmet |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 1 41 | lssss |  | 
						
							| 43 | 5 42 | syl |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | simprl |  | 
						
							| 46 | 44 45 | sseldd |  | 
						
							| 47 |  | simprr |  | 
						
							| 48 | 44 47 | sseldd |  | 
						
							| 49 |  | metcl |  | 
						
							| 50 | 40 46 48 49 | syl3anc |  | 
						
							| 51 | 50 | sqge0d |  | 
						
							| 52 | 51 | biantrud |  | 
						
							| 53 | 50 | resqcld |  | 
						
							| 54 |  | letri3 |  | 
						
							| 55 | 53 17 54 | sylancl |  | 
						
							| 56 | 50 | recnd |  | 
						
							| 57 |  | sqeq0 |  | 
						
							| 58 | 56 57 | syl |  | 
						
							| 59 |  | meteq0 |  | 
						
							| 60 | 40 46 48 59 | syl3anc |  | 
						
							| 61 | 58 60 | bitrd |  | 
						
							| 62 | 52 55 61 | 3bitr2d |  | 
						
							| 63 | 34 62 | bitrid |  | 
						
							| 64 | 26 31 63 | 3imtr3d |  | 
						
							| 65 | 64 | ralrimivva |  | 
						
							| 66 |  | oveq2 |  | 
						
							| 67 | 66 | fveq2d |  | 
						
							| 68 | 67 | breq1d |  | 
						
							| 69 | 68 | ralbidv |  | 
						
							| 70 | 69 | reu4 |  | 
						
							| 71 | 12 65 70 | sylanbrc |  |