| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minvec.x |
|
| 2 |
|
minvec.m |
|
| 3 |
|
minvec.n |
|
| 4 |
|
minvec.u |
|
| 5 |
|
minvec.y |
|
| 6 |
|
minvec.w |
|
| 7 |
|
minvec.a |
|
| 8 |
|
minvec.j |
|
| 9 |
|
minvec.r |
|
| 10 |
|
minvec.s |
|
| 11 |
|
minvec.d |
|
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
minveclem5 |
|
| 13 |
4
|
ad2antrr |
|
| 14 |
5
|
ad2antrr |
|
| 15 |
6
|
ad2antrr |
|
| 16 |
7
|
ad2antrr |
|
| 17 |
|
0re |
|
| 18 |
17
|
a1i |
|
| 19 |
|
0le0 |
|
| 20 |
19
|
a1i |
|
| 21 |
|
simplrl |
|
| 22 |
|
simplrr |
|
| 23 |
|
simprl |
|
| 24 |
|
simprr |
|
| 25 |
1 2 3 13 14 15 16 8 9 10 11 18 20 21 22 23 24
|
minveclem2 |
|
| 26 |
25
|
ex |
|
| 27 |
1 2 3 4 5 6 7 8 9 10 11
|
minveclem6 |
|
| 28 |
27
|
adantrr |
|
| 29 |
1 2 3 4 5 6 7 8 9 10 11
|
minveclem6 |
|
| 30 |
29
|
adantrl |
|
| 31 |
28 30
|
anbi12d |
|
| 32 |
|
4cn |
|
| 33 |
32
|
mul01i |
|
| 34 |
33
|
breq2i |
|
| 35 |
|
cphngp |
|
| 36 |
|
ngpms |
|
| 37 |
4 35 36
|
3syl |
|
| 38 |
37
|
adantr |
|
| 39 |
1 11
|
msmet |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
eqid |
|
| 42 |
1 41
|
lssss |
|
| 43 |
5 42
|
syl |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simprl |
|
| 46 |
44 45
|
sseldd |
|
| 47 |
|
simprr |
|
| 48 |
44 47
|
sseldd |
|
| 49 |
|
metcl |
|
| 50 |
40 46 48 49
|
syl3anc |
|
| 51 |
50
|
sqge0d |
|
| 52 |
51
|
biantrud |
|
| 53 |
50
|
resqcld |
|
| 54 |
|
letri3 |
|
| 55 |
53 17 54
|
sylancl |
|
| 56 |
50
|
recnd |
|
| 57 |
|
sqeq0 |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
meteq0 |
|
| 60 |
40 46 48 59
|
syl3anc |
|
| 61 |
58 60
|
bitrd |
|
| 62 |
52 55 61
|
3bitr2d |
|
| 63 |
34 62
|
bitrid |
|
| 64 |
26 31 63
|
3imtr3d |
|
| 65 |
64
|
ralrimivva |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
fveq2d |
|
| 68 |
67
|
breq1d |
|
| 69 |
68
|
ralbidv |
|
| 70 |
69
|
reu4 |
|
| 71 |
12 65 70
|
sylanbrc |
|