Metamath Proof Explorer


Theorem minveclem2

Description: Lemma for minvec . Any two points K and L in Y are close to each other if they are close to the infimum of distance to A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X = Base U
minvec.m - ˙ = - U
minvec.n N = norm U
minvec.u φ U CPreHil
minvec.y φ Y LSubSp U
minvec.w φ U 𝑠 Y CMetSp
minvec.a φ A X
minvec.j J = TopOpen U
minvec.r R = ran y Y N A - ˙ y
minvec.s S = sup R <
minvec.d D = dist U X × X
minveclem2.1 φ B
minveclem2.2 φ 0 B
minveclem2.3 φ K Y
minveclem2.4 φ L Y
minveclem2.5 φ A D K 2 S 2 + B
minveclem2.6 φ A D L 2 S 2 + B
Assertion minveclem2 φ K D L 2 4 B

Proof

Step Hyp Ref Expression
1 minvec.x X = Base U
2 minvec.m - ˙ = - U
3 minvec.n N = norm U
4 minvec.u φ U CPreHil
5 minvec.y φ Y LSubSp U
6 minvec.w φ U 𝑠 Y CMetSp
7 minvec.a φ A X
8 minvec.j J = TopOpen U
9 minvec.r R = ran y Y N A - ˙ y
10 minvec.s S = sup R <
11 minvec.d D = dist U X × X
12 minveclem2.1 φ B
13 minveclem2.2 φ 0 B
14 minveclem2.3 φ K Y
15 minveclem2.4 φ L Y
16 minveclem2.5 φ A D K 2 S 2 + B
17 minveclem2.6 φ A D L 2 S 2 + B
18 4re 4
19 1 2 3 4 5 6 7 8 9 10 minveclem4c φ S
20 19 resqcld φ S 2
21 remulcl 4 S 2 4 S 2
22 18 20 21 sylancr φ 4 S 2
23 cphngp U CPreHil U NrmGrp
24 4 23 syl φ U NrmGrp
25 ngpms U NrmGrp U MetSp
26 24 25 syl φ U MetSp
27 1 11 msmet U MetSp D Met X
28 26 27 syl φ D Met X
29 eqid LSubSp U = LSubSp U
30 1 29 lssss Y LSubSp U Y X
31 5 30 syl φ Y X
32 31 14 sseldd φ K X
33 31 15 sseldd φ L X
34 metcl D Met X K X L X K D L
35 28 32 33 34 syl3anc φ K D L
36 35 resqcld φ K D L 2
37 22 36 readdcld φ 4 S 2 + K D L 2
38 cphlmod U CPreHil U LMod
39 4 38 syl φ U LMod
40 cphclm U CPreHil U CMod
41 4 40 syl φ U CMod
42 eqid Scalar U = Scalar U
43 eqid Base Scalar U = Base Scalar U
44 42 43 clmzss U CMod Base Scalar U
45 41 44 syl φ Base Scalar U
46 2z 2
47 46 a1i φ 2
48 45 47 sseldd φ 2 Base Scalar U
49 2ne0 2 0
50 49 a1i φ 2 0
51 42 43 cphreccl U CPreHil 2 Base Scalar U 2 0 1 2 Base Scalar U
52 4 48 50 51 syl3anc φ 1 2 Base Scalar U
53 eqid + U = + U
54 53 29 lssvacl U LMod Y LSubSp U K Y L Y K + U L Y
55 39 5 14 15 54 syl22anc φ K + U L Y
56 eqid U = U
57 42 56 43 29 lssvscl U LMod Y LSubSp U 1 2 Base Scalar U K + U L Y 1 2 U K + U L Y
58 39 5 52 55 57 syl22anc φ 1 2 U K + U L Y
59 31 58 sseldd φ 1 2 U K + U L X
60 1 2 lmodvsubcl U LMod A X 1 2 U K + U L X A - ˙ 1 2 U K + U L X
61 39 7 59 60 syl3anc φ A - ˙ 1 2 U K + U L X
62 1 3 nmcl U NrmGrp A - ˙ 1 2 U K + U L X N A - ˙ 1 2 U K + U L
63 24 61 62 syl2anc φ N A - ˙ 1 2 U K + U L
64 63 resqcld φ N A - ˙ 1 2 U K + U L 2
65 remulcl 4 N A - ˙ 1 2 U K + U L 2 4 N A - ˙ 1 2 U K + U L 2
66 18 64 65 sylancr φ 4 N A - ˙ 1 2 U K + U L 2
67 66 36 readdcld φ 4 N A - ˙ 1 2 U K + U L 2 + K D L 2
68 20 12 readdcld φ S 2 + B
69 remulcl 4 S 2 + B 4 S 2 + B
70 18 68 69 sylancr φ 4 S 2 + B
71 1 2 3 4 5 6 7 8 9 minveclem1 φ R R w R 0 w
72 71 simp3d φ w R 0 w
73 71 simp1d φ R
74 71 simp2d φ R
75 0re 0
76 breq1 x = 0 x w 0 w
77 76 ralbidv x = 0 w R x w w R 0 w
78 77 rspcev 0 w R 0 w x w R x w
79 75 72 78 sylancr φ x w R x w
80 75 a1i φ 0
81 infregelb R R x w R x w 0 0 sup R < w R 0 w
82 73 74 79 80 81 syl31anc φ 0 sup R < w R 0 w
83 72 82 mpbird φ 0 sup R <
84 83 10 breqtrrdi φ 0 S
85 eqid N A - ˙ 1 2 U K + U L = N A - ˙ 1 2 U K + U L
86 oveq2 y = 1 2 U K + U L A - ˙ y = A - ˙ 1 2 U K + U L
87 86 fveq2d y = 1 2 U K + U L N A - ˙ y = N A - ˙ 1 2 U K + U L
88 87 rspceeqv 1 2 U K + U L Y N A - ˙ 1 2 U K + U L = N A - ˙ 1 2 U K + U L y Y N A - ˙ 1 2 U K + U L = N A - ˙ y
89 58 85 88 sylancl φ y Y N A - ˙ 1 2 U K + U L = N A - ˙ y
90 eqid y Y N A - ˙ y = y Y N A - ˙ y
91 fvex N A - ˙ y V
92 90 91 elrnmpti N A - ˙ 1 2 U K + U L ran y Y N A - ˙ y y Y N A - ˙ 1 2 U K + U L = N A - ˙ y
93 89 92 sylibr φ N A - ˙ 1 2 U K + U L ran y Y N A - ˙ y
94 93 9 eleqtrrdi φ N A - ˙ 1 2 U K + U L R
95 infrelb R x w R x w N A - ˙ 1 2 U K + U L R sup R < N A - ˙ 1 2 U K + U L
96 73 79 94 95 syl3anc φ sup R < N A - ˙ 1 2 U K + U L
97 10 96 eqbrtrid φ S N A - ˙ 1 2 U K + U L
98 le2sq2 S 0 S N A - ˙ 1 2 U K + U L S N A - ˙ 1 2 U K + U L S 2 N A - ˙ 1 2 U K + U L 2
99 19 84 63 97 98 syl22anc φ S 2 N A - ˙ 1 2 U K + U L 2
100 4pos 0 < 4
101 18 100 pm3.2i 4 0 < 4
102 lemul2 S 2 N A - ˙ 1 2 U K + U L 2 4 0 < 4 S 2 N A - ˙ 1 2 U K + U L 2 4 S 2 4 N A - ˙ 1 2 U K + U L 2
103 101 102 mp3an3 S 2 N A - ˙ 1 2 U K + U L 2 S 2 N A - ˙ 1 2 U K + U L 2 4 S 2 4 N A - ˙ 1 2 U K + U L 2
104 20 64 103 syl2anc φ S 2 N A - ˙ 1 2 U K + U L 2 4 S 2 4 N A - ˙ 1 2 U K + U L 2
105 99 104 mpbid φ 4 S 2 4 N A - ˙ 1 2 U K + U L 2
106 22 66 36 105 leadd1dd φ 4 S 2 + K D L 2 4 N A - ˙ 1 2 U K + U L 2 + K D L 2
107 metcl D Met X A X K X A D K
108 28 7 32 107 syl3anc φ A D K
109 108 resqcld φ A D K 2
110 metcl D Met X A X L X A D L
111 28 7 33 110 syl3anc φ A D L
112 111 resqcld φ A D L 2
113 109 112 68 68 16 17 le2addd φ A D K 2 + A D L 2 S 2 + B + S 2 + B
114 68 recnd φ S 2 + B
115 114 2timesd φ 2 S 2 + B = S 2 + B + S 2 + B
116 113 115 breqtrrd φ A D K 2 + A D L 2 2 S 2 + B
117 109 112 readdcld φ A D K 2 + A D L 2
118 2re 2
119 remulcl 2 S 2 + B 2 S 2 + B
120 118 68 119 sylancr φ 2 S 2 + B
121 2pos 0 < 2
122 118 121 pm3.2i 2 0 < 2
123 lemul2 A D K 2 + A D L 2 2 S 2 + B 2 0 < 2 A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
124 122 123 mp3an3 A D K 2 + A D L 2 2 S 2 + B A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
125 117 120 124 syl2anc φ A D K 2 + A D L 2 2 S 2 + B 2 A D K 2 + A D L 2 2 2 S 2 + B
126 116 125 mpbid φ 2 A D K 2 + A D L 2 2 2 S 2 + B
127 1 2 lmodvsubcl U LMod A X K X A - ˙ K X
128 39 7 32 127 syl3anc φ A - ˙ K X
129 1 2 lmodvsubcl U LMod A X L X A - ˙ L X
130 39 7 33 129 syl3anc φ A - ˙ L X
131 1 53 2 3 nmpar U CPreHil A - ˙ K X A - ˙ L X N A - ˙ K + U A - ˙ L 2 + N A - ˙ K - ˙ A - ˙ L 2 = 2 N A - ˙ K 2 + N A - ˙ L 2
132 4 128 130 131 syl3anc φ N A - ˙ K + U A - ˙ L 2 + N A - ˙ K - ˙ A - ˙ L 2 = 2 N A - ˙ K 2 + N A - ˙ L 2
133 2cn 2
134 63 recnd φ N A - ˙ 1 2 U K + U L
135 sqmul 2 N A - ˙ 1 2 U K + U L 2 N A - ˙ 1 2 U K + U L 2 = 2 2 N A - ˙ 1 2 U K + U L 2
136 133 134 135 sylancr φ 2 N A - ˙ 1 2 U K + U L 2 = 2 2 N A - ˙ 1 2 U K + U L 2
137 sq2 2 2 = 4
138 137 oveq1i 2 2 N A - ˙ 1 2 U K + U L 2 = 4 N A - ˙ 1 2 U K + U L 2
139 136 138 eqtrdi φ 2 N A - ˙ 1 2 U K + U L 2 = 4 N A - ˙ 1 2 U K + U L 2
140 1 3 56 42 43 cphnmvs U CPreHil 2 Base Scalar U A - ˙ 1 2 U K + U L X N 2 U A - ˙ 1 2 U K + U L = 2 N A - ˙ 1 2 U K + U L
141 4 48 61 140 syl3anc φ N 2 U A - ˙ 1 2 U K + U L = 2 N A - ˙ 1 2 U K + U L
142 0le2 0 2
143 absid 2 0 2 2 = 2
144 118 142 143 mp2an 2 = 2
145 144 oveq1i 2 N A - ˙ 1 2 U K + U L = 2 N A - ˙ 1 2 U K + U L
146 141 145 eqtrdi φ N 2 U A - ˙ 1 2 U K + U L = 2 N A - ˙ 1 2 U K + U L
147 1 56 42 43 2 39 48 7 59 lmodsubdi φ 2 U A - ˙ 1 2 U K + U L = 2 U A - ˙ 2 U 1 2 U K + U L
148 eqid U = U
149 1 148 53 mulg2 A X 2 U A = A + U A
150 7 149 syl φ 2 U A = A + U A
151 1 148 56 clmmulg U CMod 2 A X 2 U A = 2 U A
152 41 47 7 151 syl3anc φ 2 U A = 2 U A
153 150 152 eqtr3d φ A + U A = 2 U A
154 1 53 lmodvacl U LMod K X L X K + U L X
155 39 32 33 154 syl3anc φ K + U L X
156 1 56 clmvs1 U CMod K + U L X 1 U K + U L = K + U L
157 41 155 156 syl2anc φ 1 U K + U L = K + U L
158 133 49 recidi 2 1 2 = 1
159 158 oveq1i 2 1 2 U K + U L = 1 U K + U L
160 1 42 56 43 clmvsass U CMod 2 Base Scalar U 1 2 Base Scalar U K + U L X 2 1 2 U K + U L = 2 U 1 2 U K + U L
161 41 48 52 155 160 syl13anc φ 2 1 2 U K + U L = 2 U 1 2 U K + U L
162 159 161 eqtr3id φ 1 U K + U L = 2 U 1 2 U K + U L
163 157 162 eqtr3d φ K + U L = 2 U 1 2 U K + U L
164 153 163 oveq12d φ A + U A - ˙ K + U L = 2 U A - ˙ 2 U 1 2 U K + U L
165 lmodabl U LMod U Abel
166 39 165 syl φ U Abel
167 1 53 2 ablsub4 U Abel A X A X K X L X A + U A - ˙ K + U L = A - ˙ K + U A - ˙ L
168 166 7 7 32 33 167 syl122anc φ A + U A - ˙ K + U L = A - ˙ K + U A - ˙ L
169 147 164 168 3eqtr2d φ 2 U A - ˙ 1 2 U K + U L = A - ˙ K + U A - ˙ L
170 169 fveq2d φ N 2 U A - ˙ 1 2 U K + U L = N A - ˙ K + U A - ˙ L
171 146 170 eqtr3d φ 2 N A - ˙ 1 2 U K + U L = N A - ˙ K + U A - ˙ L
172 171 oveq1d φ 2 N A - ˙ 1 2 U K + U L 2 = N A - ˙ K + U A - ˙ L 2
173 139 172 eqtr3d φ 4 N A - ˙ 1 2 U K + U L 2 = N A - ˙ K + U A - ˙ L 2
174 eqid dist U = dist U
175 3 1 2 174 ngpdsr U NrmGrp K X L X K dist U L = N L - ˙ K
176 24 32 33 175 syl3anc φ K dist U L = N L - ˙ K
177 11 oveqi K D L = K dist U X × X L
178 32 33 ovresd φ K dist U X × X L = K dist U L
179 177 178 eqtrid φ K D L = K dist U L
180 1 2 166 7 32 33 ablnnncan1 φ A - ˙ K - ˙ A - ˙ L = L - ˙ K
181 180 fveq2d φ N A - ˙ K - ˙ A - ˙ L = N L - ˙ K
182 176 179 181 3eqtr4d φ K D L = N A - ˙ K - ˙ A - ˙ L
183 182 oveq1d φ K D L 2 = N A - ˙ K - ˙ A - ˙ L 2
184 173 183 oveq12d φ 4 N A - ˙ 1 2 U K + U L 2 + K D L 2 = N A - ˙ K + U A - ˙ L 2 + N A - ˙ K - ˙ A - ˙ L 2
185 11 oveqi A D K = A dist U X × X K
186 7 32 ovresd φ A dist U X × X K = A dist U K
187 185 186 eqtrid φ A D K = A dist U K
188 3 1 2 174 ngpds U NrmGrp A X K X A dist U K = N A - ˙ K
189 24 7 32 188 syl3anc φ A dist U K = N A - ˙ K
190 187 189 eqtrd φ A D K = N A - ˙ K
191 190 oveq1d φ A D K 2 = N A - ˙ K 2
192 11 oveqi A D L = A dist U X × X L
193 7 33 ovresd φ A dist U X × X L = A dist U L
194 192 193 eqtrid φ A D L = A dist U L
195 3 1 2 174 ngpds U NrmGrp A X L X A dist U L = N A - ˙ L
196 24 7 33 195 syl3anc φ A dist U L = N A - ˙ L
197 194 196 eqtrd φ A D L = N A - ˙ L
198 197 oveq1d φ A D L 2 = N A - ˙ L 2
199 191 198 oveq12d φ A D K 2 + A D L 2 = N A - ˙ K 2 + N A - ˙ L 2
200 199 oveq2d φ 2 A D K 2 + A D L 2 = 2 N A - ˙ K 2 + N A - ˙ L 2
201 132 184 200 3eqtr4d φ 4 N A - ˙ 1 2 U K + U L 2 + K D L 2 = 2 A D K 2 + A D L 2
202 2t2e4 2 2 = 4
203 202 oveq1i 2 2 S 2 + B = 4 S 2 + B
204 2cnd φ 2
205 204 204 114 mulassd φ 2 2 S 2 + B = 2 2 S 2 + B
206 203 205 eqtr3id φ 4 S 2 + B = 2 2 S 2 + B
207 126 201 206 3brtr4d φ 4 N A - ˙ 1 2 U K + U L 2 + K D L 2 4 S 2 + B
208 37 67 70 106 207 letrd φ 4 S 2 + K D L 2 4 S 2 + B
209 4cn 4
210 209 a1i φ 4
211 20 recnd φ S 2
212 12 recnd φ B
213 210 211 212 adddid φ 4 S 2 + B = 4 S 2 + 4 B
214 208 213 breqtrd φ 4 S 2 + K D L 2 4 S 2 + 4 B
215 remulcl 4 B 4 B
216 18 12 215 sylancr φ 4 B
217 36 216 22 leadd2d φ K D L 2 4 B 4 S 2 + K D L 2 4 S 2 + 4 B
218 214 217 mpbird φ K D L 2 4 B