Metamath Proof Explorer


Theorem minveclem2

Description: Lemma for minvec . Any two points K and L in Y are close to each other if they are close to the infimum of distance to A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
minveclem2.1 φB
minveclem2.2 φ0B
minveclem2.3 φKY
minveclem2.4 φLY
minveclem2.5 φADK2S2+B
minveclem2.6 φADL2S2+B
Assertion minveclem2 φKDL24B

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 minveclem2.1 φB
13 minveclem2.2 φ0B
14 minveclem2.3 φKY
15 minveclem2.4 φLY
16 minveclem2.5 φADK2S2+B
17 minveclem2.6 φADL2S2+B
18 4re 4
19 1 2 3 4 5 6 7 8 9 10 minveclem4c φS
20 19 resqcld φS2
21 remulcl 4S24S2
22 18 20 21 sylancr φ4S2
23 cphngp UCPreHilUNrmGrp
24 4 23 syl φUNrmGrp
25 ngpms UNrmGrpUMetSp
26 24 25 syl φUMetSp
27 1 11 msmet UMetSpDMetX
28 26 27 syl φDMetX
29 eqid LSubSpU=LSubSpU
30 1 29 lssss YLSubSpUYX
31 5 30 syl φYX
32 31 14 sseldd φKX
33 31 15 sseldd φLX
34 metcl DMetXKXLXKDL
35 28 32 33 34 syl3anc φKDL
36 35 resqcld φKDL2
37 22 36 readdcld φ4S2+KDL2
38 cphlmod UCPreHilULMod
39 4 38 syl φULMod
40 cphclm UCPreHilUCMod
41 4 40 syl φUCMod
42 eqid ScalarU=ScalarU
43 eqid BaseScalarU=BaseScalarU
44 42 43 clmzss UCModBaseScalarU
45 41 44 syl φBaseScalarU
46 2z 2
47 46 a1i φ2
48 45 47 sseldd φ2BaseScalarU
49 2ne0 20
50 49 a1i φ20
51 42 43 cphreccl UCPreHil2BaseScalarU2012BaseScalarU
52 4 48 50 51 syl3anc φ12BaseScalarU
53 eqid +U=+U
54 53 29 lssvacl ULModYLSubSpUKYLYK+ULY
55 39 5 14 15 54 syl22anc φK+ULY
56 eqid U=U
57 42 56 43 29 lssvscl ULModYLSubSpU12BaseScalarUK+ULY12UK+ULY
58 39 5 52 55 57 syl22anc φ12UK+ULY
59 31 58 sseldd φ12UK+ULX
60 1 2 lmodvsubcl ULModAX12UK+ULXA-˙12UK+ULX
61 39 7 59 60 syl3anc φA-˙12UK+ULX
62 1 3 nmcl UNrmGrpA-˙12UK+ULXNA-˙12UK+UL
63 24 61 62 syl2anc φNA-˙12UK+UL
64 63 resqcld φNA-˙12UK+UL2
65 remulcl 4NA-˙12UK+UL24NA-˙12UK+UL2
66 18 64 65 sylancr φ4NA-˙12UK+UL2
67 66 36 readdcld φ4NA-˙12UK+UL2+KDL2
68 20 12 readdcld φS2+B
69 remulcl 4S2+B4S2+B
70 18 68 69 sylancr φ4S2+B
71 1 2 3 4 5 6 7 8 9 minveclem1 φRRwR0w
72 71 simp3d φwR0w
73 71 simp1d φR
74 71 simp2d φR
75 0re 0
76 breq1 x=0xw0w
77 76 ralbidv x=0wRxwwR0w
78 77 rspcev 0wR0wxwRxw
79 75 72 78 sylancr φxwRxw
80 75 a1i φ0
81 infregelb RRxwRxw00supR<wR0w
82 73 74 79 80 81 syl31anc φ0supR<wR0w
83 72 82 mpbird φ0supR<
84 83 10 breqtrrdi φ0S
85 eqid NA-˙12UK+UL=NA-˙12UK+UL
86 oveq2 y=12UK+ULA-˙y=A-˙12UK+UL
87 86 fveq2d y=12UK+ULNA-˙y=NA-˙12UK+UL
88 87 rspceeqv 12UK+ULYNA-˙12UK+UL=NA-˙12UK+ULyYNA-˙12UK+UL=NA-˙y
89 58 85 88 sylancl φyYNA-˙12UK+UL=NA-˙y
90 eqid yYNA-˙y=yYNA-˙y
91 fvex NA-˙yV
92 90 91 elrnmpti NA-˙12UK+ULranyYNA-˙yyYNA-˙12UK+UL=NA-˙y
93 89 92 sylibr φNA-˙12UK+ULranyYNA-˙y
94 93 9 eleqtrrdi φNA-˙12UK+ULR
95 infrelb RxwRxwNA-˙12UK+ULRsupR<NA-˙12UK+UL
96 73 79 94 95 syl3anc φsupR<NA-˙12UK+UL
97 10 96 eqbrtrid φSNA-˙12UK+UL
98 le2sq2 S0SNA-˙12UK+ULSNA-˙12UK+ULS2NA-˙12UK+UL2
99 19 84 63 97 98 syl22anc φS2NA-˙12UK+UL2
100 4pos 0<4
101 18 100 pm3.2i 40<4
102 lemul2 S2NA-˙12UK+UL240<4S2NA-˙12UK+UL24S24NA-˙12UK+UL2
103 101 102 mp3an3 S2NA-˙12UK+UL2S2NA-˙12UK+UL24S24NA-˙12UK+UL2
104 20 64 103 syl2anc φS2NA-˙12UK+UL24S24NA-˙12UK+UL2
105 99 104 mpbid φ4S24NA-˙12UK+UL2
106 22 66 36 105 leadd1dd φ4S2+KDL24NA-˙12UK+UL2+KDL2
107 metcl DMetXAXKXADK
108 28 7 32 107 syl3anc φADK
109 108 resqcld φADK2
110 metcl DMetXAXLXADL
111 28 7 33 110 syl3anc φADL
112 111 resqcld φADL2
113 109 112 68 68 16 17 le2addd φADK2+ADL2S2+B+S2+B
114 68 recnd φS2+B
115 114 2timesd φ2S2+B=S2+B+S2+B
116 113 115 breqtrrd φADK2+ADL22S2+B
117 109 112 readdcld φADK2+ADL2
118 2re 2
119 remulcl 2S2+B2S2+B
120 118 68 119 sylancr φ2S2+B
121 2pos 0<2
122 118 121 pm3.2i 20<2
123 lemul2 ADK2+ADL22S2+B20<2ADK2+ADL22S2+B2ADK2+ADL222S2+B
124 122 123 mp3an3 ADK2+ADL22S2+BADK2+ADL22S2+B2ADK2+ADL222S2+B
125 117 120 124 syl2anc φADK2+ADL22S2+B2ADK2+ADL222S2+B
126 116 125 mpbid φ2ADK2+ADL222S2+B
127 1 2 lmodvsubcl ULModAXKXA-˙KX
128 39 7 32 127 syl3anc φA-˙KX
129 1 2 lmodvsubcl ULModAXLXA-˙LX
130 39 7 33 129 syl3anc φA-˙LX
131 1 53 2 3 nmpar UCPreHilA-˙KXA-˙LXNA-˙K+UA-˙L2+NA-˙K-˙A-˙L2=2NA-˙K2+NA-˙L2
132 4 128 130 131 syl3anc φNA-˙K+UA-˙L2+NA-˙K-˙A-˙L2=2NA-˙K2+NA-˙L2
133 2cn 2
134 63 recnd φNA-˙12UK+UL
135 sqmul 2NA-˙12UK+UL2NA-˙12UK+UL2=22NA-˙12UK+UL2
136 133 134 135 sylancr φ2NA-˙12UK+UL2=22NA-˙12UK+UL2
137 sq2 22=4
138 137 oveq1i 22NA-˙12UK+UL2=4NA-˙12UK+UL2
139 136 138 eqtrdi φ2NA-˙12UK+UL2=4NA-˙12UK+UL2
140 1 3 56 42 43 cphnmvs UCPreHil2BaseScalarUA-˙12UK+ULXN2UA-˙12UK+UL=2NA-˙12UK+UL
141 4 48 61 140 syl3anc φN2UA-˙12UK+UL=2NA-˙12UK+UL
142 0le2 02
143 absid 2022=2
144 118 142 143 mp2an 2=2
145 144 oveq1i 2NA-˙12UK+UL=2NA-˙12UK+UL
146 141 145 eqtrdi φN2UA-˙12UK+UL=2NA-˙12UK+UL
147 1 56 42 43 2 39 48 7 59 lmodsubdi φ2UA-˙12UK+UL=2UA-˙2U12UK+UL
148 eqid U=U
149 1 148 53 mulg2 AX2UA=A+UA
150 7 149 syl φ2UA=A+UA
151 1 148 56 clmmulg UCMod2AX2UA=2UA
152 41 47 7 151 syl3anc φ2UA=2UA
153 150 152 eqtr3d φA+UA=2UA
154 1 53 lmodvacl ULModKXLXK+ULX
155 39 32 33 154 syl3anc φK+ULX
156 1 56 clmvs1 UCModK+ULX1UK+UL=K+UL
157 41 155 156 syl2anc φ1UK+UL=K+UL
158 133 49 recidi 212=1
159 158 oveq1i 212UK+UL=1UK+UL
160 1 42 56 43 clmvsass UCMod2BaseScalarU12BaseScalarUK+ULX212UK+UL=2U12UK+UL
161 41 48 52 155 160 syl13anc φ212UK+UL=2U12UK+UL
162 159 161 eqtr3id φ1UK+UL=2U12UK+UL
163 157 162 eqtr3d φK+UL=2U12UK+UL
164 153 163 oveq12d φA+UA-˙K+UL=2UA-˙2U12UK+UL
165 lmodabl ULModUAbel
166 39 165 syl φUAbel
167 1 53 2 ablsub4 UAbelAXAXKXLXA+UA-˙K+UL=A-˙K+UA-˙L
168 166 7 7 32 33 167 syl122anc φA+UA-˙K+UL=A-˙K+UA-˙L
169 147 164 168 3eqtr2d φ2UA-˙12UK+UL=A-˙K+UA-˙L
170 169 fveq2d φN2UA-˙12UK+UL=NA-˙K+UA-˙L
171 146 170 eqtr3d φ2NA-˙12UK+UL=NA-˙K+UA-˙L
172 171 oveq1d φ2NA-˙12UK+UL2=NA-˙K+UA-˙L2
173 139 172 eqtr3d φ4NA-˙12UK+UL2=NA-˙K+UA-˙L2
174 eqid distU=distU
175 3 1 2 174 ngpdsr UNrmGrpKXLXKdistUL=NL-˙K
176 24 32 33 175 syl3anc φKdistUL=NL-˙K
177 11 oveqi KDL=KdistUX×XL
178 32 33 ovresd φKdistUX×XL=KdistUL
179 177 178 eqtrid φKDL=KdistUL
180 1 2 166 7 32 33 ablnnncan1 φA-˙K-˙A-˙L=L-˙K
181 180 fveq2d φNA-˙K-˙A-˙L=NL-˙K
182 176 179 181 3eqtr4d φKDL=NA-˙K-˙A-˙L
183 182 oveq1d φKDL2=NA-˙K-˙A-˙L2
184 173 183 oveq12d φ4NA-˙12UK+UL2+KDL2=NA-˙K+UA-˙L2+NA-˙K-˙A-˙L2
185 11 oveqi ADK=AdistUX×XK
186 7 32 ovresd φAdistUX×XK=AdistUK
187 185 186 eqtrid φADK=AdistUK
188 3 1 2 174 ngpds UNrmGrpAXKXAdistUK=NA-˙K
189 24 7 32 188 syl3anc φAdistUK=NA-˙K
190 187 189 eqtrd φADK=NA-˙K
191 190 oveq1d φADK2=NA-˙K2
192 11 oveqi ADL=AdistUX×XL
193 7 33 ovresd φAdistUX×XL=AdistUL
194 192 193 eqtrid φADL=AdistUL
195 3 1 2 174 ngpds UNrmGrpAXLXAdistUL=NA-˙L
196 24 7 33 195 syl3anc φAdistUL=NA-˙L
197 194 196 eqtrd φADL=NA-˙L
198 197 oveq1d φADL2=NA-˙L2
199 191 198 oveq12d φADK2+ADL2=NA-˙K2+NA-˙L2
200 199 oveq2d φ2ADK2+ADL2=2NA-˙K2+NA-˙L2
201 132 184 200 3eqtr4d φ4NA-˙12UK+UL2+KDL2=2ADK2+ADL2
202 2t2e4 22=4
203 202 oveq1i 22S2+B=4S2+B
204 2cnd φ2
205 204 204 114 mulassd φ22S2+B=22S2+B
206 203 205 eqtr3id φ4S2+B=22S2+B
207 126 201 206 3brtr4d φ4NA-˙12UK+UL2+KDL24S2+B
208 37 67 70 106 207 letrd φ4S2+KDL24S2+B
209 4cn 4
210 209 a1i φ4
211 20 recnd φS2
212 12 recnd φB
213 210 211 212 adddid φ4S2+B=4S2+4B
214 208 213 breqtrd φ4S2+KDL24S2+4B
215 remulcl 4B4B
216 18 12 215 sylancr φ4B
217 36 216 22 leadd2d φKDL24B4S2+KDL24S2+4B
218 214 217 mpbird φKDL24B