| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x |  |-  X = ( Base ` U ) | 
						
							| 2 |  | minvec.m |  |-  .- = ( -g ` U ) | 
						
							| 3 |  | minvec.n |  |-  N = ( norm ` U ) | 
						
							| 4 |  | minvec.u |  |-  ( ph -> U e. CPreHil ) | 
						
							| 5 |  | minvec.y |  |-  ( ph -> Y e. ( LSubSp ` U ) ) | 
						
							| 6 |  | minvec.w |  |-  ( ph -> ( U |`s Y ) e. CMetSp ) | 
						
							| 7 |  | minvec.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minvec.j |  |-  J = ( TopOpen ` U ) | 
						
							| 9 |  | minvec.r |  |-  R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
						
							| 10 |  | minvec.s |  |-  S = inf ( R , RR , < ) | 
						
							| 11 |  | minvec.d |  |-  D = ( ( dist ` U ) |` ( X X. X ) ) | 
						
							| 12 |  | minveclem2.1 |  |-  ( ph -> B e. RR ) | 
						
							| 13 |  | minveclem2.2 |  |-  ( ph -> 0 <_ B ) | 
						
							| 14 |  | minveclem2.3 |  |-  ( ph -> K e. Y ) | 
						
							| 15 |  | minveclem2.4 |  |-  ( ph -> L e. Y ) | 
						
							| 16 |  | minveclem2.5 |  |-  ( ph -> ( ( A D K ) ^ 2 ) <_ ( ( S ^ 2 ) + B ) ) | 
						
							| 17 |  | minveclem2.6 |  |-  ( ph -> ( ( A D L ) ^ 2 ) <_ ( ( S ^ 2 ) + B ) ) | 
						
							| 18 |  | 4re |  |-  4 e. RR | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 | minveclem4c |  |-  ( ph -> S e. RR ) | 
						
							| 20 | 19 | resqcld |  |-  ( ph -> ( S ^ 2 ) e. RR ) | 
						
							| 21 |  | remulcl |  |-  ( ( 4 e. RR /\ ( S ^ 2 ) e. RR ) -> ( 4 x. ( S ^ 2 ) ) e. RR ) | 
						
							| 22 | 18 20 21 | sylancr |  |-  ( ph -> ( 4 x. ( S ^ 2 ) ) e. RR ) | 
						
							| 23 |  | cphngp |  |-  ( U e. CPreHil -> U e. NrmGrp ) | 
						
							| 24 | 4 23 | syl |  |-  ( ph -> U e. NrmGrp ) | 
						
							| 25 |  | ngpms |  |-  ( U e. NrmGrp -> U e. MetSp ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> U e. MetSp ) | 
						
							| 27 | 1 11 | msmet |  |-  ( U e. MetSp -> D e. ( Met ` X ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 29 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 30 | 1 29 | lssss |  |-  ( Y e. ( LSubSp ` U ) -> Y C_ X ) | 
						
							| 31 | 5 30 | syl |  |-  ( ph -> Y C_ X ) | 
						
							| 32 | 31 14 | sseldd |  |-  ( ph -> K e. X ) | 
						
							| 33 | 31 15 | sseldd |  |-  ( ph -> L e. X ) | 
						
							| 34 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ K e. X /\ L e. X ) -> ( K D L ) e. RR ) | 
						
							| 35 | 28 32 33 34 | syl3anc |  |-  ( ph -> ( K D L ) e. RR ) | 
						
							| 36 | 35 | resqcld |  |-  ( ph -> ( ( K D L ) ^ 2 ) e. RR ) | 
						
							| 37 | 22 36 | readdcld |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) e. RR ) | 
						
							| 38 |  | cphlmod |  |-  ( U e. CPreHil -> U e. LMod ) | 
						
							| 39 | 4 38 | syl |  |-  ( ph -> U e. LMod ) | 
						
							| 40 |  | cphclm |  |-  ( U e. CPreHil -> U e. CMod ) | 
						
							| 41 | 4 40 | syl |  |-  ( ph -> U e. CMod ) | 
						
							| 42 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 43 |  | eqid |  |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) | 
						
							| 44 | 42 43 | clmzss |  |-  ( U e. CMod -> ZZ C_ ( Base ` ( Scalar ` U ) ) ) | 
						
							| 45 | 41 44 | syl |  |-  ( ph -> ZZ C_ ( Base ` ( Scalar ` U ) ) ) | 
						
							| 46 |  | 2z |  |-  2 e. ZZ | 
						
							| 47 | 46 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 48 | 45 47 | sseldd |  |-  ( ph -> 2 e. ( Base ` ( Scalar ` U ) ) ) | 
						
							| 49 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 50 | 49 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 51 | 42 43 | cphreccl |  |-  ( ( U e. CPreHil /\ 2 e. ( Base ` ( Scalar ` U ) ) /\ 2 =/= 0 ) -> ( 1 / 2 ) e. ( Base ` ( Scalar ` U ) ) ) | 
						
							| 52 | 4 48 50 51 | syl3anc |  |-  ( ph -> ( 1 / 2 ) e. ( Base ` ( Scalar ` U ) ) ) | 
						
							| 53 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 54 | 53 29 | lssvacl |  |-  ( ( ( U e. LMod /\ Y e. ( LSubSp ` U ) ) /\ ( K e. Y /\ L e. Y ) ) -> ( K ( +g ` U ) L ) e. Y ) | 
						
							| 55 | 39 5 14 15 54 | syl22anc |  |-  ( ph -> ( K ( +g ` U ) L ) e. Y ) | 
						
							| 56 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 57 | 42 56 43 29 | lssvscl |  |-  ( ( ( U e. LMod /\ Y e. ( LSubSp ` U ) ) /\ ( ( 1 / 2 ) e. ( Base ` ( Scalar ` U ) ) /\ ( K ( +g ` U ) L ) e. Y ) ) -> ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) e. Y ) | 
						
							| 58 | 39 5 52 55 57 | syl22anc |  |-  ( ph -> ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) e. Y ) | 
						
							| 59 | 31 58 | sseldd |  |-  ( ph -> ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) e. X ) | 
						
							| 60 | 1 2 | lmodvsubcl |  |-  ( ( U e. LMod /\ A e. X /\ ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) e. X ) -> ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) e. X ) | 
						
							| 61 | 39 7 59 60 | syl3anc |  |-  ( ph -> ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) e. X ) | 
						
							| 62 | 1 3 | nmcl |  |-  ( ( U e. NrmGrp /\ ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) e. X ) -> ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. RR ) | 
						
							| 63 | 24 61 62 | syl2anc |  |-  ( ph -> ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. RR ) | 
						
							| 64 | 63 | resqcld |  |-  ( ph -> ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) e. RR ) | 
						
							| 65 |  | remulcl |  |-  ( ( 4 e. RR /\ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) e. RR ) -> ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) e. RR ) | 
						
							| 66 | 18 64 65 | sylancr |  |-  ( ph -> ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) e. RR ) | 
						
							| 67 | 66 36 | readdcld |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) e. RR ) | 
						
							| 68 | 20 12 | readdcld |  |-  ( ph -> ( ( S ^ 2 ) + B ) e. RR ) | 
						
							| 69 |  | remulcl |  |-  ( ( 4 e. RR /\ ( ( S ^ 2 ) + B ) e. RR ) -> ( 4 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 70 | 18 68 69 | sylancr |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 71 | 1 2 3 4 5 6 7 8 9 | minveclem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 72 | 71 | simp3d |  |-  ( ph -> A. w e. R 0 <_ w ) | 
						
							| 73 | 71 | simp1d |  |-  ( ph -> R C_ RR ) | 
						
							| 74 | 71 | simp2d |  |-  ( ph -> R =/= (/) ) | 
						
							| 75 |  | 0re |  |-  0 e. RR | 
						
							| 76 |  | breq1 |  |-  ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) | 
						
							| 77 | 76 | ralbidv |  |-  ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 78 | 77 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 79 | 75 72 78 | sylancr |  |-  ( ph -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 80 | 75 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 81 |  | infregelb |  |-  ( ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) /\ 0 e. RR ) -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 82 | 73 74 79 80 81 | syl31anc |  |-  ( ph -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 83 | 72 82 | mpbird |  |-  ( ph -> 0 <_ inf ( R , RR , < ) ) | 
						
							| 84 | 83 10 | breqtrrdi |  |-  ( ph -> 0 <_ S ) | 
						
							| 85 |  | eqid |  |-  ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 86 |  | oveq2 |  |-  ( y = ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) -> ( A .- y ) = ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 87 | 86 | fveq2d |  |-  ( y = ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) -> ( N ` ( A .- y ) ) = ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 88 | 87 | rspceeqv |  |-  ( ( ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) e. Y /\ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) -> E. y e. Y ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( N ` ( A .- y ) ) ) | 
						
							| 89 | 58 85 88 | sylancl |  |-  ( ph -> E. y e. Y ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( N ` ( A .- y ) ) ) | 
						
							| 90 |  | eqid |  |-  ( y e. Y |-> ( N ` ( A .- y ) ) ) = ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
						
							| 91 |  | fvex |  |-  ( N ` ( A .- y ) ) e. _V | 
						
							| 92 | 90 91 | elrnmpti |  |-  ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. ran ( y e. Y |-> ( N ` ( A .- y ) ) ) <-> E. y e. Y ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( N ` ( A .- y ) ) ) | 
						
							| 93 | 89 92 | sylibr |  |-  ( ph -> ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. ran ( y e. Y |-> ( N ` ( A .- y ) ) ) ) | 
						
							| 94 | 93 9 | eleqtrrdi |  |-  ( ph -> ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. R ) | 
						
							| 95 |  | infrelb |  |-  ( ( R C_ RR /\ E. x e. RR A. w e. R x <_ w /\ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. R ) -> inf ( R , RR , < ) <_ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 96 | 73 79 94 95 | syl3anc |  |-  ( ph -> inf ( R , RR , < ) <_ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 97 | 10 96 | eqbrtrid |  |-  ( ph -> S <_ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 98 |  | le2sq2 |  |-  ( ( ( S e. RR /\ 0 <_ S ) /\ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. RR /\ S <_ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ) -> ( S ^ 2 ) <_ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 99 | 19 84 63 97 98 | syl22anc |  |-  ( ph -> ( S ^ 2 ) <_ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 100 |  | 4pos |  |-  0 < 4 | 
						
							| 101 | 18 100 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 102 |  | lemul2 |  |-  ( ( ( S ^ 2 ) e. RR /\ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( S ^ 2 ) <_ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 103 | 101 102 | mp3an3 |  |-  ( ( ( S ^ 2 ) e. RR /\ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) e. RR ) -> ( ( S ^ 2 ) <_ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 104 | 20 64 103 | syl2anc |  |-  ( ph -> ( ( S ^ 2 ) <_ ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 105 | 99 104 | mpbid |  |-  ( ph -> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 106 | 22 66 36 105 | leadd1dd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) ) | 
						
							| 107 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ K e. X ) -> ( A D K ) e. RR ) | 
						
							| 108 | 28 7 32 107 | syl3anc |  |-  ( ph -> ( A D K ) e. RR ) | 
						
							| 109 | 108 | resqcld |  |-  ( ph -> ( ( A D K ) ^ 2 ) e. RR ) | 
						
							| 110 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ L e. X ) -> ( A D L ) e. RR ) | 
						
							| 111 | 28 7 33 110 | syl3anc |  |-  ( ph -> ( A D L ) e. RR ) | 
						
							| 112 | 111 | resqcld |  |-  ( ph -> ( ( A D L ) ^ 2 ) e. RR ) | 
						
							| 113 | 109 112 68 68 16 17 | le2addd |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( ( ( S ^ 2 ) + B ) + ( ( S ^ 2 ) + B ) ) ) | 
						
							| 114 | 68 | recnd |  |-  ( ph -> ( ( S ^ 2 ) + B ) e. CC ) | 
						
							| 115 | 114 | 2timesd |  |-  ( ph -> ( 2 x. ( ( S ^ 2 ) + B ) ) = ( ( ( S ^ 2 ) + B ) + ( ( S ^ 2 ) + B ) ) ) | 
						
							| 116 | 113 115 | breqtrrd |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 117 | 109 112 | readdcld |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR ) | 
						
							| 118 |  | 2re |  |-  2 e. RR | 
						
							| 119 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( S ^ 2 ) + B ) e. RR ) -> ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 120 | 118 68 119 | sylancr |  |-  ( ph -> ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 121 |  | 2pos |  |-  0 < 2 | 
						
							| 122 | 118 121 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 123 |  | lemul2 |  |-  ( ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR /\ ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 124 | 122 123 | mp3an3 |  |-  ( ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR /\ ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 125 | 117 120 124 | syl2anc |  |-  ( ph -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 126 | 116 125 | mpbid |  |-  ( ph -> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 127 | 1 2 | lmodvsubcl |  |-  ( ( U e. LMod /\ A e. X /\ K e. X ) -> ( A .- K ) e. X ) | 
						
							| 128 | 39 7 32 127 | syl3anc |  |-  ( ph -> ( A .- K ) e. X ) | 
						
							| 129 | 1 2 | lmodvsubcl |  |-  ( ( U e. LMod /\ A e. X /\ L e. X ) -> ( A .- L ) e. X ) | 
						
							| 130 | 39 7 33 129 | syl3anc |  |-  ( ph -> ( A .- L ) e. X ) | 
						
							| 131 | 1 53 2 3 | nmpar |  |-  ( ( U e. CPreHil /\ ( A .- K ) e. X /\ ( A .- L ) e. X ) -> ( ( ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ^ 2 ) + ( ( N ` ( ( A .- K ) .- ( A .- L ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` ( A .- K ) ) ^ 2 ) + ( ( N ` ( A .- L ) ) ^ 2 ) ) ) ) | 
						
							| 132 | 4 128 130 131 | syl3anc |  |-  ( ph -> ( ( ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ^ 2 ) + ( ( N ` ( ( A .- K ) .- ( A .- L ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` ( A .- K ) ) ^ 2 ) + ( ( N ` ( A .- L ) ) ^ 2 ) ) ) ) | 
						
							| 133 |  | 2cn |  |-  2 e. CC | 
						
							| 134 | 63 | recnd |  |-  ( ph -> ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. CC ) | 
						
							| 135 |  | sqmul |  |-  ( ( 2 e. CC /\ ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) e. CC ) -> ( ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 136 | 133 134 135 | sylancr |  |-  ( ph -> ( ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 137 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 138 | 137 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) = ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 139 | 136 138 | eqtrdi |  |-  ( ph -> ( ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ^ 2 ) = ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 140 | 1 3 56 42 43 | cphnmvs |  |-  ( ( U e. CPreHil /\ 2 e. ( Base ` ( Scalar ` U ) ) /\ ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) e. X ) -> ( N ` ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( ( abs ` 2 ) x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ) | 
						
							| 141 | 4 48 61 140 | syl3anc |  |-  ( ph -> ( N ` ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( ( abs ` 2 ) x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ) | 
						
							| 142 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 143 |  | absid |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) | 
						
							| 144 | 118 142 143 | mp2an |  |-  ( abs ` 2 ) = 2 | 
						
							| 145 | 144 | oveq1i |  |-  ( ( abs ` 2 ) x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 146 | 141 145 | eqtrdi |  |-  ( ph -> ( N ` ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ) | 
						
							| 147 | 1 56 42 43 2 39 48 7 59 | lmodsubdi |  |-  ( ph -> ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( ( 2 ( .s ` U ) A ) .- ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 148 |  | eqid |  |-  ( .g ` U ) = ( .g ` U ) | 
						
							| 149 | 1 148 53 | mulg2 |  |-  ( A e. X -> ( 2 ( .g ` U ) A ) = ( A ( +g ` U ) A ) ) | 
						
							| 150 | 7 149 | syl |  |-  ( ph -> ( 2 ( .g ` U ) A ) = ( A ( +g ` U ) A ) ) | 
						
							| 151 | 1 148 56 | clmmulg |  |-  ( ( U e. CMod /\ 2 e. ZZ /\ A e. X ) -> ( 2 ( .g ` U ) A ) = ( 2 ( .s ` U ) A ) ) | 
						
							| 152 | 41 47 7 151 | syl3anc |  |-  ( ph -> ( 2 ( .g ` U ) A ) = ( 2 ( .s ` U ) A ) ) | 
						
							| 153 | 150 152 | eqtr3d |  |-  ( ph -> ( A ( +g ` U ) A ) = ( 2 ( .s ` U ) A ) ) | 
						
							| 154 | 1 53 | lmodvacl |  |-  ( ( U e. LMod /\ K e. X /\ L e. X ) -> ( K ( +g ` U ) L ) e. X ) | 
						
							| 155 | 39 32 33 154 | syl3anc |  |-  ( ph -> ( K ( +g ` U ) L ) e. X ) | 
						
							| 156 | 1 56 | clmvs1 |  |-  ( ( U e. CMod /\ ( K ( +g ` U ) L ) e. X ) -> ( 1 ( .s ` U ) ( K ( +g ` U ) L ) ) = ( K ( +g ` U ) L ) ) | 
						
							| 157 | 41 155 156 | syl2anc |  |-  ( ph -> ( 1 ( .s ` U ) ( K ( +g ` U ) L ) ) = ( K ( +g ` U ) L ) ) | 
						
							| 158 | 133 49 | recidi |  |-  ( 2 x. ( 1 / 2 ) ) = 1 | 
						
							| 159 | 158 | oveq1i |  |-  ( ( 2 x. ( 1 / 2 ) ) ( .s ` U ) ( K ( +g ` U ) L ) ) = ( 1 ( .s ` U ) ( K ( +g ` U ) L ) ) | 
						
							| 160 | 1 42 56 43 | clmvsass |  |-  ( ( U e. CMod /\ ( 2 e. ( Base ` ( Scalar ` U ) ) /\ ( 1 / 2 ) e. ( Base ` ( Scalar ` U ) ) /\ ( K ( +g ` U ) L ) e. X ) ) -> ( ( 2 x. ( 1 / 2 ) ) ( .s ` U ) ( K ( +g ` U ) L ) ) = ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 161 | 41 48 52 155 160 | syl13anc |  |-  ( ph -> ( ( 2 x. ( 1 / 2 ) ) ( .s ` U ) ( K ( +g ` U ) L ) ) = ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 162 | 159 161 | eqtr3id |  |-  ( ph -> ( 1 ( .s ` U ) ( K ( +g ` U ) L ) ) = ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 163 | 157 162 | eqtr3d |  |-  ( ph -> ( K ( +g ` U ) L ) = ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) | 
						
							| 164 | 153 163 | oveq12d |  |-  ( ph -> ( ( A ( +g ` U ) A ) .- ( K ( +g ` U ) L ) ) = ( ( 2 ( .s ` U ) A ) .- ( 2 ( .s ` U ) ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) | 
						
							| 165 |  | lmodabl |  |-  ( U e. LMod -> U e. Abel ) | 
						
							| 166 | 39 165 | syl |  |-  ( ph -> U e. Abel ) | 
						
							| 167 | 1 53 2 | ablsub4 |  |-  ( ( U e. Abel /\ ( A e. X /\ A e. X ) /\ ( K e. X /\ L e. X ) ) -> ( ( A ( +g ` U ) A ) .- ( K ( +g ` U ) L ) ) = ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) | 
						
							| 168 | 166 7 7 32 33 167 | syl122anc |  |-  ( ph -> ( ( A ( +g ` U ) A ) .- ( K ( +g ` U ) L ) ) = ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) | 
						
							| 169 | 147 164 168 | 3eqtr2d |  |-  ( ph -> ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) = ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) | 
						
							| 170 | 169 | fveq2d |  |-  ( ph -> ( N ` ( 2 ( .s ` U ) ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ) | 
						
							| 171 | 146 170 | eqtr3d |  |-  ( ph -> ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) = ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ) | 
						
							| 172 | 171 | oveq1d |  |-  ( ph -> ( ( 2 x. ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ) ^ 2 ) = ( ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ^ 2 ) ) | 
						
							| 173 | 139 172 | eqtr3d |  |-  ( ph -> ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) = ( ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ^ 2 ) ) | 
						
							| 174 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 175 | 3 1 2 174 | ngpdsr |  |-  ( ( U e. NrmGrp /\ K e. X /\ L e. X ) -> ( K ( dist ` U ) L ) = ( N ` ( L .- K ) ) ) | 
						
							| 176 | 24 32 33 175 | syl3anc |  |-  ( ph -> ( K ( dist ` U ) L ) = ( N ` ( L .- K ) ) ) | 
						
							| 177 | 11 | oveqi |  |-  ( K D L ) = ( K ( ( dist ` U ) |` ( X X. X ) ) L ) | 
						
							| 178 | 32 33 | ovresd |  |-  ( ph -> ( K ( ( dist ` U ) |` ( X X. X ) ) L ) = ( K ( dist ` U ) L ) ) | 
						
							| 179 | 177 178 | eqtrid |  |-  ( ph -> ( K D L ) = ( K ( dist ` U ) L ) ) | 
						
							| 180 | 1 2 166 7 32 33 | ablnnncan1 |  |-  ( ph -> ( ( A .- K ) .- ( A .- L ) ) = ( L .- K ) ) | 
						
							| 181 | 180 | fveq2d |  |-  ( ph -> ( N ` ( ( A .- K ) .- ( A .- L ) ) ) = ( N ` ( L .- K ) ) ) | 
						
							| 182 | 176 179 181 | 3eqtr4d |  |-  ( ph -> ( K D L ) = ( N ` ( ( A .- K ) .- ( A .- L ) ) ) ) | 
						
							| 183 | 182 | oveq1d |  |-  ( ph -> ( ( K D L ) ^ 2 ) = ( ( N ` ( ( A .- K ) .- ( A .- L ) ) ) ^ 2 ) ) | 
						
							| 184 | 173 183 | oveq12d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) = ( ( ( N ` ( ( A .- K ) ( +g ` U ) ( A .- L ) ) ) ^ 2 ) + ( ( N ` ( ( A .- K ) .- ( A .- L ) ) ) ^ 2 ) ) ) | 
						
							| 185 | 11 | oveqi |  |-  ( A D K ) = ( A ( ( dist ` U ) |` ( X X. X ) ) K ) | 
						
							| 186 | 7 32 | ovresd |  |-  ( ph -> ( A ( ( dist ` U ) |` ( X X. X ) ) K ) = ( A ( dist ` U ) K ) ) | 
						
							| 187 | 185 186 | eqtrid |  |-  ( ph -> ( A D K ) = ( A ( dist ` U ) K ) ) | 
						
							| 188 | 3 1 2 174 | ngpds |  |-  ( ( U e. NrmGrp /\ A e. X /\ K e. X ) -> ( A ( dist ` U ) K ) = ( N ` ( A .- K ) ) ) | 
						
							| 189 | 24 7 32 188 | syl3anc |  |-  ( ph -> ( A ( dist ` U ) K ) = ( N ` ( A .- K ) ) ) | 
						
							| 190 | 187 189 | eqtrd |  |-  ( ph -> ( A D K ) = ( N ` ( A .- K ) ) ) | 
						
							| 191 | 190 | oveq1d |  |-  ( ph -> ( ( A D K ) ^ 2 ) = ( ( N ` ( A .- K ) ) ^ 2 ) ) | 
						
							| 192 | 11 | oveqi |  |-  ( A D L ) = ( A ( ( dist ` U ) |` ( X X. X ) ) L ) | 
						
							| 193 | 7 33 | ovresd |  |-  ( ph -> ( A ( ( dist ` U ) |` ( X X. X ) ) L ) = ( A ( dist ` U ) L ) ) | 
						
							| 194 | 192 193 | eqtrid |  |-  ( ph -> ( A D L ) = ( A ( dist ` U ) L ) ) | 
						
							| 195 | 3 1 2 174 | ngpds |  |-  ( ( U e. NrmGrp /\ A e. X /\ L e. X ) -> ( A ( dist ` U ) L ) = ( N ` ( A .- L ) ) ) | 
						
							| 196 | 24 7 33 195 | syl3anc |  |-  ( ph -> ( A ( dist ` U ) L ) = ( N ` ( A .- L ) ) ) | 
						
							| 197 | 194 196 | eqtrd |  |-  ( ph -> ( A D L ) = ( N ` ( A .- L ) ) ) | 
						
							| 198 | 197 | oveq1d |  |-  ( ph -> ( ( A D L ) ^ 2 ) = ( ( N ` ( A .- L ) ) ^ 2 ) ) | 
						
							| 199 | 191 198 | oveq12d |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) = ( ( ( N ` ( A .- K ) ) ^ 2 ) + ( ( N ` ( A .- L ) ) ^ 2 ) ) ) | 
						
							| 200 | 199 | oveq2d |  |-  ( ph -> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A .- K ) ) ^ 2 ) + ( ( N ` ( A .- L ) ) ^ 2 ) ) ) ) | 
						
							| 201 | 132 184 200 | 3eqtr4d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) = ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) ) | 
						
							| 202 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 203 | 202 | oveq1i |  |-  ( ( 2 x. 2 ) x. ( ( S ^ 2 ) + B ) ) = ( 4 x. ( ( S ^ 2 ) + B ) ) | 
						
							| 204 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 205 | 204 204 114 | mulassd |  |-  ( ph -> ( ( 2 x. 2 ) x. ( ( S ^ 2 ) + B ) ) = ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 206 | 203 205 | eqtr3id |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) = ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 207 | 126 201 206 | 3brtr4d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A .- ( ( 1 / 2 ) ( .s ` U ) ( K ( +g ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( 4 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 208 | 37 67 70 106 207 | letrd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( 4 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 209 |  | 4cn |  |-  4 e. CC | 
						
							| 210 | 209 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 211 | 20 | recnd |  |-  ( ph -> ( S ^ 2 ) e. CC ) | 
						
							| 212 | 12 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 213 | 210 211 212 | adddid |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) = ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) | 
						
							| 214 | 208 213 | breqtrd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) | 
						
							| 215 |  | remulcl |  |-  ( ( 4 e. RR /\ B e. RR ) -> ( 4 x. B ) e. RR ) | 
						
							| 216 | 18 12 215 | sylancr |  |-  ( ph -> ( 4 x. B ) e. RR ) | 
						
							| 217 | 36 216 22 | leadd2d |  |-  ( ph -> ( ( ( K D L ) ^ 2 ) <_ ( 4 x. B ) <-> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) ) | 
						
							| 218 | 214 217 | mpbird |  |-  ( ph -> ( ( K D L ) ^ 2 ) <_ ( 4 x. B ) ) |