Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
|- X = ( Base ` U ) |
2 |
|
minvec.m |
|- .- = ( -g ` U ) |
3 |
|
minvec.n |
|- N = ( norm ` U ) |
4 |
|
minvec.u |
|- ( ph -> U e. CPreHil ) |
5 |
|
minvec.y |
|- ( ph -> Y e. ( LSubSp ` U ) ) |
6 |
|
minvec.w |
|- ( ph -> ( U |`s Y ) e. CMetSp ) |
7 |
|
minvec.a |
|- ( ph -> A e. X ) |
8 |
|
minvec.j |
|- J = ( TopOpen ` U ) |
9 |
|
minvec.r |
|- R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) |
10 |
|
minvec.s |
|- S = inf ( R , RR , < ) |
11 |
1 2 3 4 5 6 7 8 9
|
minveclem1 |
|- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
12 |
11
|
simp1d |
|- ( ph -> R C_ RR ) |
13 |
11
|
simp2d |
|- ( ph -> R =/= (/) ) |
14 |
|
0re |
|- 0 e. RR |
15 |
11
|
simp3d |
|- ( ph -> A. w e. R 0 <_ w ) |
16 |
|
breq1 |
|- ( y = 0 -> ( y <_ w <-> 0 <_ w ) ) |
17 |
16
|
ralbidv |
|- ( y = 0 -> ( A. w e. R y <_ w <-> A. w e. R 0 <_ w ) ) |
18 |
17
|
rspcev |
|- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. y e. RR A. w e. R y <_ w ) |
19 |
14 15 18
|
sylancr |
|- ( ph -> E. y e. RR A. w e. R y <_ w ) |
20 |
|
infrecl |
|- ( ( R C_ RR /\ R =/= (/) /\ E. y e. RR A. w e. R y <_ w ) -> inf ( R , RR , < ) e. RR ) |
21 |
12 13 19 20
|
syl3anc |
|- ( ph -> inf ( R , RR , < ) e. RR ) |
22 |
10 21
|
eqeltrid |
|- ( ph -> S e. RR ) |