Metamath Proof Explorer


Theorem minveclem4c

Description: Lemma for minvec . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x
|- X = ( Base ` U )
minvec.m
|- .- = ( -g ` U )
minvec.n
|- N = ( norm ` U )
minvec.u
|- ( ph -> U e. CPreHil )
minvec.y
|- ( ph -> Y e. ( LSubSp ` U ) )
minvec.w
|- ( ph -> ( U |`s Y ) e. CMetSp )
minvec.a
|- ( ph -> A e. X )
minvec.j
|- J = ( TopOpen ` U )
minvec.r
|- R = ran ( y e. Y |-> ( N ` ( A .- y ) ) )
minvec.s
|- S = inf ( R , RR , < )
Assertion minveclem4c
|- ( ph -> S e. RR )

Proof

Step Hyp Ref Expression
1 minvec.x
 |-  X = ( Base ` U )
2 minvec.m
 |-  .- = ( -g ` U )
3 minvec.n
 |-  N = ( norm ` U )
4 minvec.u
 |-  ( ph -> U e. CPreHil )
5 minvec.y
 |-  ( ph -> Y e. ( LSubSp ` U ) )
6 minvec.w
 |-  ( ph -> ( U |`s Y ) e. CMetSp )
7 minvec.a
 |-  ( ph -> A e. X )
8 minvec.j
 |-  J = ( TopOpen ` U )
9 minvec.r
 |-  R = ran ( y e. Y |-> ( N ` ( A .- y ) ) )
10 minvec.s
 |-  S = inf ( R , RR , < )
11 1 2 3 4 5 6 7 8 9 minveclem1
 |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) )
12 11 simp1d
 |-  ( ph -> R C_ RR )
13 11 simp2d
 |-  ( ph -> R =/= (/) )
14 0re
 |-  0 e. RR
15 11 simp3d
 |-  ( ph -> A. w e. R 0 <_ w )
16 breq1
 |-  ( y = 0 -> ( y <_ w <-> 0 <_ w ) )
17 16 ralbidv
 |-  ( y = 0 -> ( A. w e. R y <_ w <-> A. w e. R 0 <_ w ) )
18 17 rspcev
 |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. y e. RR A. w e. R y <_ w )
19 14 15 18 sylancr
 |-  ( ph -> E. y e. RR A. w e. R y <_ w )
20 infrecl
 |-  ( ( R C_ RR /\ R =/= (/) /\ E. y e. RR A. w e. R y <_ w ) -> inf ( R , RR , < ) e. RR )
21 12 13 19 20 syl3anc
 |-  ( ph -> inf ( R , RR , < ) e. RR )
22 10 21 eqeltrid
 |-  ( ph -> S e. RR )