| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x |  |-  X = ( Base ` U ) | 
						
							| 2 |  | minvec.m |  |-  .- = ( -g ` U ) | 
						
							| 3 |  | minvec.n |  |-  N = ( norm ` U ) | 
						
							| 4 |  | minvec.u |  |-  ( ph -> U e. CPreHil ) | 
						
							| 5 |  | minvec.y |  |-  ( ph -> Y e. ( LSubSp ` U ) ) | 
						
							| 6 |  | minvec.w |  |-  ( ph -> ( U |`s Y ) e. CMetSp ) | 
						
							| 7 |  | minvec.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minvec.j |  |-  J = ( TopOpen ` U ) | 
						
							| 9 |  | minvec.r |  |-  R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
						
							| 10 |  | minvec.s |  |-  S = inf ( R , RR , < ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | minveclem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 12 | 11 | simp1d |  |-  ( ph -> R C_ RR ) | 
						
							| 13 | 11 | simp2d |  |-  ( ph -> R =/= (/) ) | 
						
							| 14 |  | 0re |  |-  0 e. RR | 
						
							| 15 | 11 | simp3d |  |-  ( ph -> A. w e. R 0 <_ w ) | 
						
							| 16 |  | breq1 |  |-  ( y = 0 -> ( y <_ w <-> 0 <_ w ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( y = 0 -> ( A. w e. R y <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 18 | 17 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. y e. RR A. w e. R y <_ w ) | 
						
							| 19 | 14 15 18 | sylancr |  |-  ( ph -> E. y e. RR A. w e. R y <_ w ) | 
						
							| 20 |  | infrecl |  |-  ( ( R C_ RR /\ R =/= (/) /\ E. y e. RR A. w e. R y <_ w ) -> inf ( R , RR , < ) e. RR ) | 
						
							| 21 | 12 13 19 20 | syl3anc |  |-  ( ph -> inf ( R , RR , < ) e. RR ) | 
						
							| 22 | 10 21 | eqeltrid |  |-  ( ph -> S e. RR ) |