Metamath Proof Explorer


Theorem minveclem4c

Description: Lemma for minvec . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X = Base U
minvec.m - ˙ = - U
minvec.n N = norm U
minvec.u φ U CPreHil
minvec.y φ Y LSubSp U
minvec.w φ U 𝑠 Y CMetSp
minvec.a φ A X
minvec.j J = TopOpen U
minvec.r R = ran y Y N A - ˙ y
minvec.s S = sup R <
Assertion minveclem4c φ S

Proof

Step Hyp Ref Expression
1 minvec.x X = Base U
2 minvec.m - ˙ = - U
3 minvec.n N = norm U
4 minvec.u φ U CPreHil
5 minvec.y φ Y LSubSp U
6 minvec.w φ U 𝑠 Y CMetSp
7 minvec.a φ A X
8 minvec.j J = TopOpen U
9 minvec.r R = ran y Y N A - ˙ y
10 minvec.s S = sup R <
11 1 2 3 4 5 6 7 8 9 minveclem1 φ R R w R 0 w
12 11 simp1d φ R
13 11 simp2d φ R
14 0re 0
15 11 simp3d φ w R 0 w
16 breq1 y = 0 y w 0 w
17 16 ralbidv y = 0 w R y w w R 0 w
18 17 rspcev 0 w R 0 w y w R y w
19 14 15 18 sylancr φ y w R y w
20 infrecl R R y w R y w sup R <
21 12 13 19 20 syl3anc φ sup R <
22 10 21 eqeltrid φ S