Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
β’ π = ( Base β π ) |
2 |
|
minvec.m |
β’ β = ( -g β π ) |
3 |
|
minvec.n |
β’ π = ( norm β π ) |
4 |
|
minvec.u |
β’ ( π β π β βPreHil ) |
5 |
|
minvec.y |
β’ ( π β π β ( LSubSp β π ) ) |
6 |
|
minvec.w |
β’ ( π β ( π βΎs π ) β CMetSp ) |
7 |
|
minvec.a |
β’ ( π β π΄ β π ) |
8 |
|
minvec.j |
β’ π½ = ( TopOpen β π ) |
9 |
|
minvec.r |
β’ π
= ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
10 |
|
minvec.s |
β’ π = inf ( π
, β , < ) |
11 |
1 2 3 4 5 6 7 8 9
|
minveclem1 |
β’ ( π β ( π
β β β§ π
β β
β§ β π€ β π
0 β€ π€ ) ) |
12 |
11
|
simp1d |
β’ ( π β π
β β ) |
13 |
11
|
simp2d |
β’ ( π β π
β β
) |
14 |
|
0re |
β’ 0 β β |
15 |
11
|
simp3d |
β’ ( π β β π€ β π
0 β€ π€ ) |
16 |
|
breq1 |
β’ ( π¦ = 0 β ( π¦ β€ π€ β 0 β€ π€ ) ) |
17 |
16
|
ralbidv |
β’ ( π¦ = 0 β ( β π€ β π
π¦ β€ π€ β β π€ β π
0 β€ π€ ) ) |
18 |
17
|
rspcev |
β’ ( ( 0 β β β§ β π€ β π
0 β€ π€ ) β β π¦ β β β π€ β π
π¦ β€ π€ ) |
19 |
14 15 18
|
sylancr |
β’ ( π β β π¦ β β β π€ β π
π¦ β€ π€ ) |
20 |
|
infrecl |
β’ ( ( π
β β β§ π
β β
β§ β π¦ β β β π€ β π
π¦ β€ π€ ) β inf ( π
, β , < ) β β ) |
21 |
12 13 19 20
|
syl3anc |
β’ ( π β inf ( π
, β , < ) β β ) |
22 |
10 21
|
eqeltrid |
β’ ( π β π β β ) |