Metamath Proof Explorer


Theorem minveclem4c

Description: Lemma for minvec . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x 𝑋 = ( Base ‘ 𝑈 )
minvec.m = ( -g𝑈 )
minvec.n 𝑁 = ( norm ‘ 𝑈 )
minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
minvec.a ( 𝜑𝐴𝑋 )
minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
Assertion minveclem4c ( 𝜑𝑆 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 minvec.x 𝑋 = ( Base ‘ 𝑈 )
2 minvec.m = ( -g𝑈 )
3 minvec.n 𝑁 = ( norm ‘ 𝑈 )
4 minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
5 minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
6 minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
7 minvec.a ( 𝜑𝐴𝑋 )
8 minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
9 minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
10 minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
11 1 2 3 4 5 6 7 8 9 minveclem1 ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )
12 11 simp1d ( 𝜑𝑅 ⊆ ℝ )
13 11 simp2d ( 𝜑𝑅 ≠ ∅ )
14 0re 0 ∈ ℝ
15 11 simp3d ( 𝜑 → ∀ 𝑤𝑅 0 ≤ 𝑤 )
16 breq1 ( 𝑦 = 0 → ( 𝑦𝑤 ↔ 0 ≤ 𝑤 ) )
17 16 ralbidv ( 𝑦 = 0 → ( ∀ 𝑤𝑅 𝑦𝑤 ↔ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )
18 17 rspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤𝑅 𝑦𝑤 )
19 14 15 18 sylancr ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤𝑅 𝑦𝑤 )
20 infrecl ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤𝑅 𝑦𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ )
21 12 13 19 20 syl3anc ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ )
22 10 21 eqeltrid ( 𝜑𝑆 ∈ ℝ )