Metamath Proof Explorer


Theorem minveclem4c

Description: Lemma for minvec . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x ⊒ 𝑋 = ( Base β€˜ π‘ˆ )
minvec.m ⊒ βˆ’ = ( -g β€˜ π‘ˆ )
minvec.n ⊒ 𝑁 = ( norm β€˜ π‘ˆ )
minvec.u ⊒ ( πœ‘ β†’ π‘ˆ ∈ β„‚PreHil )
minvec.y ⊒ ( πœ‘ β†’ π‘Œ ∈ ( LSubSp β€˜ π‘ˆ ) )
minvec.w ⊒ ( πœ‘ β†’ ( π‘ˆ β†Ύs π‘Œ ) ∈ CMetSp )
minvec.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
minvec.j ⊒ 𝐽 = ( TopOpen β€˜ π‘ˆ )
minvec.r ⊒ 𝑅 = ran ( 𝑦 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )
minvec.s ⊒ 𝑆 = inf ( 𝑅 , ℝ , < )
Assertion minveclem4c ( πœ‘ β†’ 𝑆 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 minvec.x ⊒ 𝑋 = ( Base β€˜ π‘ˆ )
2 minvec.m ⊒ βˆ’ = ( -g β€˜ π‘ˆ )
3 minvec.n ⊒ 𝑁 = ( norm β€˜ π‘ˆ )
4 minvec.u ⊒ ( πœ‘ β†’ π‘ˆ ∈ β„‚PreHil )
5 minvec.y ⊒ ( πœ‘ β†’ π‘Œ ∈ ( LSubSp β€˜ π‘ˆ ) )
6 minvec.w ⊒ ( πœ‘ β†’ ( π‘ˆ β†Ύs π‘Œ ) ∈ CMetSp )
7 minvec.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
8 minvec.j ⊒ 𝐽 = ( TopOpen β€˜ π‘ˆ )
9 minvec.r ⊒ 𝑅 = ran ( 𝑦 ∈ π‘Œ ↦ ( 𝑁 β€˜ ( 𝐴 βˆ’ 𝑦 ) ) )
10 minvec.s ⊒ 𝑆 = inf ( 𝑅 , ℝ , < )
11 1 2 3 4 5 6 7 8 9 minveclem1 ⊒ ( πœ‘ β†’ ( 𝑅 βŠ† ℝ ∧ 𝑅 β‰  βˆ… ∧ βˆ€ 𝑀 ∈ 𝑅 0 ≀ 𝑀 ) )
12 11 simp1d ⊒ ( πœ‘ β†’ 𝑅 βŠ† ℝ )
13 11 simp2d ⊒ ( πœ‘ β†’ 𝑅 β‰  βˆ… )
14 0re ⊒ 0 ∈ ℝ
15 11 simp3d ⊒ ( πœ‘ β†’ βˆ€ 𝑀 ∈ 𝑅 0 ≀ 𝑀 )
16 breq1 ⊒ ( 𝑦 = 0 β†’ ( 𝑦 ≀ 𝑀 ↔ 0 ≀ 𝑀 ) )
17 16 ralbidv ⊒ ( 𝑦 = 0 β†’ ( βˆ€ 𝑀 ∈ 𝑅 𝑦 ≀ 𝑀 ↔ βˆ€ 𝑀 ∈ 𝑅 0 ≀ 𝑀 ) )
18 17 rspcev ⊒ ( ( 0 ∈ ℝ ∧ βˆ€ 𝑀 ∈ 𝑅 0 ≀ 𝑀 ) β†’ βˆƒ 𝑦 ∈ ℝ βˆ€ 𝑀 ∈ 𝑅 𝑦 ≀ 𝑀 )
19 14 15 18 sylancr ⊒ ( πœ‘ β†’ βˆƒ 𝑦 ∈ ℝ βˆ€ 𝑀 ∈ 𝑅 𝑦 ≀ 𝑀 )
20 infrecl ⊒ ( ( 𝑅 βŠ† ℝ ∧ 𝑅 β‰  βˆ… ∧ βˆƒ 𝑦 ∈ ℝ βˆ€ 𝑀 ∈ 𝑅 𝑦 ≀ 𝑀 ) β†’ inf ( 𝑅 , ℝ , < ) ∈ ℝ )
21 12 13 19 20 syl3anc ⊒ ( πœ‘ β†’ inf ( 𝑅 , ℝ , < ) ∈ ℝ )
22 10 21 eqeltrid ⊒ ( πœ‘ β†’ 𝑆 ∈ ℝ )