Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
1 2 3 4 5 6 7 8 9
|
minveclem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
13 |
11
|
simp2d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
14 |
|
0re |
⊢ 0 ∈ ℝ |
15 |
11
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
16 |
|
breq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑦 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
18 |
17
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ) |
19 |
14 15 18
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ) |
20 |
|
infrecl |
⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
21 |
12 13 19 20
|
syl3anc |
⊢ ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
22 |
10 21
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |