| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | minveclem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( 𝜑  →  𝑅  ⊆  ℝ ) | 
						
							| 13 | 11 | simp2d | ⊢ ( 𝜑  →  𝑅  ≠  ∅ ) | 
						
							| 14 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 15 | 11 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑦  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 18 | 17 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 ) | 
						
							| 19 | 14 15 18 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 ) | 
						
							| 20 |  | infrecl | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 21 | 12 13 19 20 | syl3anc | ⊢ ( 𝜑  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 22 | 10 21 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) |