Metamath Proof Explorer


Theorem minveclem1

Description: Lemma for minvec . The set of all distances from points of Y to A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x 𝑋 = ( Base ‘ 𝑈 )
minvec.m = ( -g𝑈 )
minvec.n 𝑁 = ( norm ‘ 𝑈 )
minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
minvec.a ( 𝜑𝐴𝑋 )
minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
Assertion minveclem1 ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )

Proof

Step Hyp Ref Expression
1 minvec.x 𝑋 = ( Base ‘ 𝑈 )
2 minvec.m = ( -g𝑈 )
3 minvec.n 𝑁 = ( norm ‘ 𝑈 )
4 minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
5 minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
6 minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
7 minvec.a ( 𝜑𝐴𝑋 )
8 minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
9 minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
10 cphngp ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp )
11 4 10 syl ( 𝜑𝑈 ∈ NrmGrp )
12 cphlmod ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod )
13 4 12 syl ( 𝜑𝑈 ∈ LMod )
14 13 adantr ( ( 𝜑𝑦𝑌 ) → 𝑈 ∈ LMod )
15 7 adantr ( ( 𝜑𝑦𝑌 ) → 𝐴𝑋 )
16 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
17 1 16 lssss ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌𝑋 )
18 5 17 syl ( 𝜑𝑌𝑋 )
19 18 sselda ( ( 𝜑𝑦𝑌 ) → 𝑦𝑋 )
20 1 2 lmodvsubcl ( ( 𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋 ) → ( 𝐴 𝑦 ) ∈ 𝑋 )
21 14 15 19 20 syl3anc ( ( 𝜑𝑦𝑌 ) → ( 𝐴 𝑦 ) ∈ 𝑋 )
22 1 3 nmcl ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ∈ ℝ )
23 11 21 22 syl2an2r ( ( 𝜑𝑦𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ∈ ℝ )
24 23 fmpttd ( 𝜑 → ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) : 𝑌 ⟶ ℝ )
25 24 frnd ( 𝜑 → ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) ⊆ ℝ )
26 9 25 eqsstrid ( 𝜑𝑅 ⊆ ℝ )
27 16 lssn0 ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ≠ ∅ )
28 5 27 syl ( 𝜑𝑌 ≠ ∅ )
29 9 eqeq1i ( 𝑅 = ∅ ↔ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = ∅ )
30 dm0rn0 ( dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = ∅ ↔ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = ∅ )
31 fvex ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ∈ V
32 eqid ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
33 31 32 dmmpti dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = 𝑌
34 33 eqeq1i ( dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) = ∅ ↔ 𝑌 = ∅ )
35 29 30 34 3bitr2i ( 𝑅 = ∅ ↔ 𝑌 = ∅ )
36 35 necon3bii ( 𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅ )
37 28 36 sylibr ( 𝜑𝑅 ≠ ∅ )
38 1 3 nmge0 ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
39 11 21 38 syl2an2r ( ( 𝜑𝑦𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
40 39 ralrimiva ( 𝜑 → ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
41 31 rgenw 𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ∈ V
42 breq2 ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑦 ) ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) )
43 32 42 ralrnmptw ( ∀ 𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) )
44 41 43 ax-mp ( ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
45 40 44 sylibr ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) 0 ≤ 𝑤 )
46 9 raleqi ( ∀ 𝑤𝑅 0 ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) ) 0 ≤ 𝑤 )
47 45 46 sylibr ( 𝜑 → ∀ 𝑤𝑅 0 ≤ 𝑤 )
48 26 37 47 3jca ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )