Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
β’ π = ( Base β π ) |
2 |
|
minvec.m |
β’ β = ( -g β π ) |
3 |
|
minvec.n |
β’ π = ( norm β π ) |
4 |
|
minvec.u |
β’ ( π β π β βPreHil ) |
5 |
|
minvec.y |
β’ ( π β π β ( LSubSp β π ) ) |
6 |
|
minvec.w |
β’ ( π β ( π βΎs π ) β CMetSp ) |
7 |
|
minvec.a |
β’ ( π β π΄ β π ) |
8 |
|
minvec.j |
β’ π½ = ( TopOpen β π ) |
9 |
|
minvec.r |
β’ π
= ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
10 |
|
cphngp |
β’ ( π β βPreHil β π β NrmGrp ) |
11 |
4 10
|
syl |
β’ ( π β π β NrmGrp ) |
12 |
|
cphlmod |
β’ ( π β βPreHil β π β LMod ) |
13 |
4 12
|
syl |
β’ ( π β π β LMod ) |
14 |
13
|
adantr |
β’ ( ( π β§ π¦ β π ) β π β LMod ) |
15 |
7
|
adantr |
β’ ( ( π β§ π¦ β π ) β π΄ β π ) |
16 |
|
eqid |
β’ ( LSubSp β π ) = ( LSubSp β π ) |
17 |
1 16
|
lssss |
β’ ( π β ( LSubSp β π ) β π β π ) |
18 |
5 17
|
syl |
β’ ( π β π β π ) |
19 |
18
|
sselda |
β’ ( ( π β§ π¦ β π ) β π¦ β π ) |
20 |
1 2
|
lmodvsubcl |
β’ ( ( π β LMod β§ π΄ β π β§ π¦ β π ) β ( π΄ β π¦ ) β π ) |
21 |
14 15 19 20
|
syl3anc |
β’ ( ( π β§ π¦ β π ) β ( π΄ β π¦ ) β π ) |
22 |
1 3
|
nmcl |
β’ ( ( π β NrmGrp β§ ( π΄ β π¦ ) β π ) β ( π β ( π΄ β π¦ ) ) β β ) |
23 |
11 21 22
|
syl2an2r |
β’ ( ( π β§ π¦ β π ) β ( π β ( π΄ β π¦ ) ) β β ) |
24 |
23
|
fmpttd |
β’ ( π β ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) : π βΆ β ) |
25 |
24
|
frnd |
β’ ( π β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) β β ) |
26 |
9 25
|
eqsstrid |
β’ ( π β π
β β ) |
27 |
16
|
lssn0 |
β’ ( π β ( LSubSp β π ) β π β β
) |
28 |
5 27
|
syl |
β’ ( π β π β β
) |
29 |
9
|
eqeq1i |
β’ ( π
= β
β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = β
) |
30 |
|
dm0rn0 |
β’ ( dom ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = β
β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = β
) |
31 |
|
fvex |
β’ ( π β ( π΄ β π¦ ) ) β V |
32 |
|
eqid |
β’ ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
33 |
31 32
|
dmmpti |
β’ dom ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = π |
34 |
33
|
eqeq1i |
β’ ( dom ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) = β
β π = β
) |
35 |
29 30 34
|
3bitr2i |
β’ ( π
= β
β π = β
) |
36 |
35
|
necon3bii |
β’ ( π
β β
β π β β
) |
37 |
28 36
|
sylibr |
β’ ( π β π
β β
) |
38 |
1 3
|
nmge0 |
β’ ( ( π β NrmGrp β§ ( π΄ β π¦ ) β π ) β 0 β€ ( π β ( π΄ β π¦ ) ) ) |
39 |
11 21 38
|
syl2an2r |
β’ ( ( π β§ π¦ β π ) β 0 β€ ( π β ( π΄ β π¦ ) ) ) |
40 |
39
|
ralrimiva |
β’ ( π β β π¦ β π 0 β€ ( π β ( π΄ β π¦ ) ) ) |
41 |
31
|
rgenw |
β’ β π¦ β π ( π β ( π΄ β π¦ ) ) β V |
42 |
|
breq2 |
β’ ( π€ = ( π β ( π΄ β π¦ ) ) β ( 0 β€ π€ β 0 β€ ( π β ( π΄ β π¦ ) ) ) ) |
43 |
32 42
|
ralrnmptw |
β’ ( β π¦ β π ( π β ( π΄ β π¦ ) ) β V β ( β π€ β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) 0 β€ π€ β β π¦ β π 0 β€ ( π β ( π΄ β π¦ ) ) ) ) |
44 |
41 43
|
ax-mp |
β’ ( β π€ β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) 0 β€ π€ β β π¦ β π 0 β€ ( π β ( π΄ β π¦ ) ) ) |
45 |
40 44
|
sylibr |
β’ ( π β β π€ β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) 0 β€ π€ ) |
46 |
9
|
raleqi |
β’ ( β π€ β π
0 β€ π€ β β π€ β ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) 0 β€ π€ ) |
47 |
45 46
|
sylibr |
β’ ( π β β π€ β π
0 β€ π€ ) |
48 |
26 37 47
|
3jca |
β’ ( π β ( π
β β β§ π
β β
β§ β π€ β π
0 β€ π€ ) ) |