Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
cphngp |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmGrp ) |
12 |
|
cphlmod |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ LMod ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
17 |
1 16
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
20 |
1 2
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 − 𝑦 ) ∈ 𝑋 ) |
21 |
14 15 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 − 𝑦 ) ∈ 𝑋 ) |
22 |
1 3
|
nmcl |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 − 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
23 |
11 21 22
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
24 |
23
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) : 𝑌 ⟶ ℝ ) |
25 |
24
|
frnd |
⊢ ( 𝜑 → ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ⊆ ℝ ) |
26 |
9 25
|
eqsstrid |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
27 |
16
|
lssn0 |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ≠ ∅ ) |
28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
29 |
9
|
eqeq1i |
⊢ ( 𝑅 = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ∅ ) |
30 |
|
dm0rn0 |
⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ∅ ) |
31 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V |
32 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
33 |
31 32
|
dmmpti |
⊢ dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = 𝑌 |
34 |
33
|
eqeq1i |
⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ∅ ↔ 𝑌 = ∅ ) |
35 |
29 30 34
|
3bitr2i |
⊢ ( 𝑅 = ∅ ↔ 𝑌 = ∅ ) |
36 |
35
|
necon3bii |
⊢ ( 𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅ ) |
37 |
28 36
|
sylibr |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
38 |
1 3
|
nmge0 |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 − 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
39 |
11 21 38
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
41 |
31
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V |
42 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
43 |
32 42
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
44 |
41 43
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
45 |
40 44
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) 0 ≤ 𝑤 ) |
46 |
9
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) 0 ≤ 𝑤 ) |
47 |
45 46
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
48 |
26 37 47
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |