| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x |  |-  X = ( Base ` U ) | 
						
							| 2 |  | minvec.m |  |-  .- = ( -g ` U ) | 
						
							| 3 |  | minvec.n |  |-  N = ( norm ` U ) | 
						
							| 4 |  | minvec.u |  |-  ( ph -> U e. CPreHil ) | 
						
							| 5 |  | minvec.y |  |-  ( ph -> Y e. ( LSubSp ` U ) ) | 
						
							| 6 |  | minvec.w |  |-  ( ph -> ( U |`s Y ) e. CMetSp ) | 
						
							| 7 |  | minvec.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minvec.j |  |-  J = ( TopOpen ` U ) | 
						
							| 9 |  | minvec.r |  |-  R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) | 
						
							| 10 |  | minvec.s |  |-  S = inf ( R , RR , < ) | 
						
							| 11 |  | minvec.d |  |-  D = ( ( dist ` U ) |` ( X X. X ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` ( U |`s Y ) ) = ( Base ` ( U |`s Y ) ) | 
						
							| 13 |  | eqid |  |-  ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) = ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) | 
						
							| 14 | 12 13 | cmscmet |  |-  ( ( U |`s Y ) e. CMetSp -> ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) e. ( CMet ` ( Base ` ( U |`s Y ) ) ) ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) e. ( CMet ` ( Base ` ( U |`s Y ) ) ) ) | 
						
							| 16 | 11 | reseq1i |  |-  ( D |` ( Y X. Y ) ) = ( ( ( dist ` U ) |` ( X X. X ) ) |` ( Y X. Y ) ) | 
						
							| 17 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 18 | 1 17 | lssss |  |-  ( Y e. ( LSubSp ` U ) -> Y C_ X ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> Y C_ X ) | 
						
							| 20 |  | xpss12 |  |-  ( ( Y C_ X /\ Y C_ X ) -> ( Y X. Y ) C_ ( X X. X ) ) | 
						
							| 21 | 19 19 20 | syl2anc |  |-  ( ph -> ( Y X. Y ) C_ ( X X. X ) ) | 
						
							| 22 | 21 | resabs1d |  |-  ( ph -> ( ( ( dist ` U ) |` ( X X. X ) ) |` ( Y X. Y ) ) = ( ( dist ` U ) |` ( Y X. Y ) ) ) | 
						
							| 23 |  | eqid |  |-  ( U |`s Y ) = ( U |`s Y ) | 
						
							| 24 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 25 | 23 24 | ressds |  |-  ( Y e. ( LSubSp ` U ) -> ( dist ` U ) = ( dist ` ( U |`s Y ) ) ) | 
						
							| 26 | 5 25 | syl |  |-  ( ph -> ( dist ` U ) = ( dist ` ( U |`s Y ) ) ) | 
						
							| 27 | 23 1 | ressbas2 |  |-  ( Y C_ X -> Y = ( Base ` ( U |`s Y ) ) ) | 
						
							| 28 | 19 27 | syl |  |-  ( ph -> Y = ( Base ` ( U |`s Y ) ) ) | 
						
							| 29 | 28 | sqxpeqd |  |-  ( ph -> ( Y X. Y ) = ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) | 
						
							| 30 | 26 29 | reseq12d |  |-  ( ph -> ( ( dist ` U ) |` ( Y X. Y ) ) = ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) ) | 
						
							| 31 | 22 30 | eqtrd |  |-  ( ph -> ( ( ( dist ` U ) |` ( X X. X ) ) |` ( Y X. Y ) ) = ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) ) | 
						
							| 32 | 16 31 | eqtrid |  |-  ( ph -> ( D |` ( Y X. Y ) ) = ( ( dist ` ( U |`s Y ) ) |` ( ( Base ` ( U |`s Y ) ) X. ( Base ` ( U |`s Y ) ) ) ) ) | 
						
							| 33 | 28 | fveq2d |  |-  ( ph -> ( CMet ` Y ) = ( CMet ` ( Base ` ( U |`s Y ) ) ) ) | 
						
							| 34 | 15 32 33 | 3eltr4d |  |-  ( ph -> ( D |` ( Y X. Y ) ) e. ( CMet ` Y ) ) |