Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) = ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) |
13 |
|
eqid |
⊢ ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) = ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) |
14 |
12 13
|
cmscmet |
⊢ ( ( 𝑈 ↾s 𝑌 ) ∈ CMetSp → ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) ∈ ( CMet ‘ ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) ∈ ( CMet ‘ ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) |
16 |
11
|
reseq1i |
⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
18 |
1 17
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
20 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
21 |
19 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
22 |
21
|
resabs1d |
⊢ ( 𝜑 → ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ 𝑈 ) ↾ ( 𝑌 × 𝑌 ) ) ) |
23 |
|
eqid |
⊢ ( 𝑈 ↾s 𝑌 ) = ( 𝑈 ↾s 𝑌 ) |
24 |
|
eqid |
⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) |
25 |
23 24
|
ressds |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → ( dist ‘ 𝑈 ) = ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ) |
26 |
5 25
|
syl |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) = ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ) |
27 |
23 1
|
ressbas2 |
⊢ ( 𝑌 ⊆ 𝑋 → 𝑌 = ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) |
28 |
19 27
|
syl |
⊢ ( 𝜑 → 𝑌 = ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) |
29 |
28
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝑌 × 𝑌 ) = ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) |
30 |
26 29
|
reseq12d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) ) |
31 |
22 30
|
eqtrd |
⊢ ( 𝜑 → ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) ) |
32 |
16 31
|
eqtrid |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈 ↾s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) × ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) ) |
33 |
28
|
fveq2d |
⊢ ( 𝜑 → ( CMet ‘ 𝑌 ) = ( CMet ‘ ( Base ‘ ( 𝑈 ↾s 𝑌 ) ) ) ) |
34 |
15 32 33
|
3eltr4d |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) |