| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  =  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) )  =  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) | 
						
							| 14 | 12 13 | cmscmet | ⊢ ( ( 𝑈  ↾s  𝑌 )  ∈  CMetSp  →  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) )  ∈  ( CMet ‘ ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝜑  →  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) )  ∈  ( CMet ‘ ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) | 
						
							| 16 | 11 | reseq1i | ⊢ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  =  ( ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝑌  ×  𝑌 ) ) | 
						
							| 17 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 18 | 1 17 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 20 |  | xpss12 | ⊢ ( ( 𝑌  ⊆  𝑋  ∧  𝑌  ⊆  𝑋 )  →  ( 𝑌  ×  𝑌 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 21 | 19 19 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ×  𝑌 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 22 | 21 | resabs1d | ⊢ ( 𝜑  →  ( ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝑌  ×  𝑌 ) )  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑈  ↾s  𝑌 )  =  ( 𝑈  ↾s  𝑌 ) | 
						
							| 24 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 25 | 23 24 | ressds | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  ( dist ‘ 𝑈 )  =  ( dist ‘ ( 𝑈  ↾s  𝑌 ) ) ) | 
						
							| 26 | 5 25 | syl | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 )  =  ( dist ‘ ( 𝑈  ↾s  𝑌 ) ) ) | 
						
							| 27 | 23 1 | ressbas2 | ⊢ ( 𝑌  ⊆  𝑋  →  𝑌  =  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) | 
						
							| 28 | 19 27 | syl | ⊢ ( 𝜑  →  𝑌  =  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) | 
						
							| 29 | 28 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑌  ×  𝑌 )  =  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) | 
						
							| 30 | 26 29 | reseq12d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑈 )  ↾  ( 𝑌  ×  𝑌 ) )  =  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) ) | 
						
							| 31 | 22 30 | eqtrd | ⊢ ( 𝜑  →  ( ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝑌  ×  𝑌 ) )  =  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) ) | 
						
							| 32 | 16 31 | eqtrid | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  =  ( ( dist ‘ ( 𝑈  ↾s  𝑌 ) )  ↾  ( ( Base ‘ ( 𝑈  ↾s  𝑌 ) )  ×  ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) ) | 
						
							| 33 | 28 | fveq2d | ⊢ ( 𝜑  →  ( CMet ‘ 𝑌 )  =  ( CMet ‘ ( Base ‘ ( 𝑈  ↾s  𝑌 ) ) ) ) | 
						
							| 34 | 15 32 33 | 3eltr4d | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ 𝑌 ) ) |