Metamath Proof Explorer


Theorem minveclem3a

Description: Lemma for minvec . D is a complete metric when restricted to Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x 𝑋 = ( Base ‘ 𝑈 )
minvec.m = ( -g𝑈 )
minvec.n 𝑁 = ( norm ‘ 𝑈 )
minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
minvec.a ( 𝜑𝐴𝑋 )
minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion minveclem3a ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 minvec.x 𝑋 = ( Base ‘ 𝑈 )
2 minvec.m = ( -g𝑈 )
3 minvec.n 𝑁 = ( norm ‘ 𝑈 )
4 minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
5 minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
6 minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
7 minvec.a ( 𝜑𝐴𝑋 )
8 minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
9 minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
10 minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
11 minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
12 eqid ( Base ‘ ( 𝑈s 𝑌 ) ) = ( Base ‘ ( 𝑈s 𝑌 ) )
13 eqid ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) = ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) )
14 12 13 cmscmet ( ( 𝑈s 𝑌 ) ∈ CMetSp → ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) ∈ ( CMet ‘ ( Base ‘ ( 𝑈s 𝑌 ) ) ) )
15 6 14 syl ( 𝜑 → ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) ∈ ( CMet ‘ ( Base ‘ ( 𝑈s 𝑌 ) ) ) )
16 11 reseq1i ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) )
17 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
18 1 17 lssss ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌𝑋 )
19 5 18 syl ( 𝜑𝑌𝑋 )
20 xpss12 ( ( 𝑌𝑋𝑌𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) )
21 19 19 20 syl2anc ( 𝜑 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) )
22 21 resabs1d ( 𝜑 → ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ 𝑈 ) ↾ ( 𝑌 × 𝑌 ) ) )
23 eqid ( 𝑈s 𝑌 ) = ( 𝑈s 𝑌 )
24 eqid ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 )
25 23 24 ressds ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → ( dist ‘ 𝑈 ) = ( dist ‘ ( 𝑈s 𝑌 ) ) )
26 5 25 syl ( 𝜑 → ( dist ‘ 𝑈 ) = ( dist ‘ ( 𝑈s 𝑌 ) ) )
27 23 1 ressbas2 ( 𝑌𝑋𝑌 = ( Base ‘ ( 𝑈s 𝑌 ) ) )
28 19 27 syl ( 𝜑𝑌 = ( Base ‘ ( 𝑈s 𝑌 ) ) )
29 28 sqxpeqd ( 𝜑 → ( 𝑌 × 𝑌 ) = ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) )
30 26 29 reseq12d ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) )
31 22 30 eqtrd ( 𝜑 → ( ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) )
32 16 31 eqtrid ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( 𝑈s 𝑌 ) ) ↾ ( ( Base ‘ ( 𝑈s 𝑌 ) ) × ( Base ‘ ( 𝑈s 𝑌 ) ) ) ) )
33 28 fveq2d ( 𝜑 → ( CMet ‘ 𝑌 ) = ( CMet ‘ ( Base ‘ ( 𝑈s 𝑌 ) ) ) )
34 15 32 33 3eltr4d ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) )