Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
β’ π = ( Base β π ) |
2 |
|
minvec.m |
β’ β = ( -g β π ) |
3 |
|
minvec.n |
β’ π = ( norm β π ) |
4 |
|
minvec.u |
β’ ( π β π β βPreHil ) |
5 |
|
minvec.y |
β’ ( π β π β ( LSubSp β π ) ) |
6 |
|
minvec.w |
β’ ( π β ( π βΎs π ) β CMetSp ) |
7 |
|
minvec.a |
β’ ( π β π΄ β π ) |
8 |
|
minvec.j |
β’ π½ = ( TopOpen β π ) |
9 |
|
minvec.r |
β’ π
= ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
10 |
|
minvec.s |
β’ π = inf ( π
, β , < ) |
11 |
|
minvec.d |
β’ π· = ( ( dist β π ) βΎ ( π Γ π ) ) |
12 |
|
eqid |
β’ ( Base β ( π βΎs π ) ) = ( Base β ( π βΎs π ) ) |
13 |
|
eqid |
β’ ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) = ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) |
14 |
12 13
|
cmscmet |
β’ ( ( π βΎs π ) β CMetSp β ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) β ( CMet β ( Base β ( π βΎs π ) ) ) ) |
15 |
6 14
|
syl |
β’ ( π β ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) β ( CMet β ( Base β ( π βΎs π ) ) ) ) |
16 |
11
|
reseq1i |
β’ ( π· βΎ ( π Γ π ) ) = ( ( ( dist β π ) βΎ ( π Γ π ) ) βΎ ( π Γ π ) ) |
17 |
|
eqid |
β’ ( LSubSp β π ) = ( LSubSp β π ) |
18 |
1 17
|
lssss |
β’ ( π β ( LSubSp β π ) β π β π ) |
19 |
5 18
|
syl |
β’ ( π β π β π ) |
20 |
|
xpss12 |
β’ ( ( π β π β§ π β π ) β ( π Γ π ) β ( π Γ π ) ) |
21 |
19 19 20
|
syl2anc |
β’ ( π β ( π Γ π ) β ( π Γ π ) ) |
22 |
21
|
resabs1d |
β’ ( π β ( ( ( dist β π ) βΎ ( π Γ π ) ) βΎ ( π Γ π ) ) = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
23 |
|
eqid |
β’ ( π βΎs π ) = ( π βΎs π ) |
24 |
|
eqid |
β’ ( dist β π ) = ( dist β π ) |
25 |
23 24
|
ressds |
β’ ( π β ( LSubSp β π ) β ( dist β π ) = ( dist β ( π βΎs π ) ) ) |
26 |
5 25
|
syl |
β’ ( π β ( dist β π ) = ( dist β ( π βΎs π ) ) ) |
27 |
23 1
|
ressbas2 |
β’ ( π β π β π = ( Base β ( π βΎs π ) ) ) |
28 |
19 27
|
syl |
β’ ( π β π = ( Base β ( π βΎs π ) ) ) |
29 |
28
|
sqxpeqd |
β’ ( π β ( π Γ π ) = ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) |
30 |
26 29
|
reseq12d |
β’ ( π β ( ( dist β π ) βΎ ( π Γ π ) ) = ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) ) |
31 |
22 30
|
eqtrd |
β’ ( π β ( ( ( dist β π ) βΎ ( π Γ π ) ) βΎ ( π Γ π ) ) = ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) ) |
32 |
16 31
|
eqtrid |
β’ ( π β ( π· βΎ ( π Γ π ) ) = ( ( dist β ( π βΎs π ) ) βΎ ( ( Base β ( π βΎs π ) ) Γ ( Base β ( π βΎs π ) ) ) ) ) |
33 |
28
|
fveq2d |
β’ ( π β ( CMet β π ) = ( CMet β ( Base β ( π βΎs π ) ) ) ) |
34 |
15 32 33
|
3eltr4d |
β’ ( π β ( π· βΎ ( π Γ π ) ) β ( CMet β π ) ) |