| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | minvec.f | ⊢ 𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 13 |  | ssrab2 | ⊢ { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ⊆  𝑌 | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 15 |  | elpw2g | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  ( { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ∈  𝒫  𝑌  ↔  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ⊆  𝑌 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ∈  𝒫  𝑌  ↔  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ⊆  𝑌 ) ) | 
						
							| 17 | 13 16 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ∈  𝒫  𝑌 ) | 
						
							| 18 | 17 | fmpttd | ⊢ ( 𝜑  →  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) : ℝ+ ⟶ 𝒫  𝑌 ) | 
						
							| 19 | 18 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  ⊆  𝒫  𝑌 ) | 
						
							| 20 | 12 19 | eqsstrid | ⊢ ( 𝜑  →  𝐹  ⊆  𝒫  𝑌 ) | 
						
							| 21 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 22 |  | eqid | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 23 | 22 17 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ℝ+ ) | 
						
							| 24 | 21 23 | eleqtrrid | ⊢ ( 𝜑  →  1  ∈  dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 25 | 24 | ne0d | ⊢ ( 𝜑  →  dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  ≠  ∅ ) | 
						
							| 26 |  | dm0rn0 | ⊢ ( dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ∅  ↔  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ∅ ) | 
						
							| 27 | 12 | eqeq1i | ⊢ ( 𝐹  =  ∅  ↔  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ∅ ) | 
						
							| 28 | 26 27 | bitr4i | ⊢ ( dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ∅  ↔  𝐹  =  ∅ ) | 
						
							| 29 | 28 | necon3bii | ⊢ ( dom  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  ≠  ∅  ↔  𝐹  ≠  ∅ ) | 
						
							| 30 | 25 29 | sylib | ⊢ ( 𝜑  →  𝐹  ≠  ∅ ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 | minveclem4c | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 32 | 31 | resqcld | ⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 33 |  | ltaddrp | ⊢ ( ( ( 𝑆 ↑ 2 )  ∈  ℝ  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆 ↑ 2 )  <  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 34 | 32 33 | sylan | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆 ↑ 2 )  <  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 35 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 36 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑟  ∈  ℝ ) | 
						
							| 38 | 35 37 | readdcld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ∈  ℂ ) | 
						
							| 40 | 39 | sqsqrtd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 )  =  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 41 | 34 40 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆 ↑ 2 )  <  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 | minveclem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 43 | 42 | simp1d | ⊢ ( 𝜑  →  𝑅  ⊆  ℝ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑅  ⊆  ℝ ) | 
						
							| 45 | 42 | simp2d | ⊢ ( 𝜑  →  𝑅  ≠  ∅ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑅  ≠  ∅ ) | 
						
							| 47 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 48 | 42 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 49 |  | breq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 50 | 49 | ralbidv | ⊢ ( 𝑦  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 51 | 50 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 ) | 
						
							| 52 | 47 48 51 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 ) | 
						
							| 54 |  | infrecl | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 55 | 44 46 53 54 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 56 | 10 55 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑆  ∈  ℝ ) | 
						
							| 57 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ∈  ℝ ) | 
						
							| 58 | 56 | sqge0d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ≤  ( 𝑆 ↑ 2 ) ) | 
						
							| 59 | 57 35 38 58 34 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  <  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 60 | 57 38 59 | ltled | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 61 | 38 60 | resqrtcld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ∈  ℝ ) | 
						
							| 62 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 63 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 )  ∧  0  ∈  ℝ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 64 | 44 46 53 57 63 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 65 | 62 64 | mpbird | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 66 | 65 10 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ≤  𝑆 ) | 
						
							| 67 | 38 60 | sqrtge0d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  0  ≤  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 68 | 56 61 66 67 | lt2sqd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆  <  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ↔  ( 𝑆 ↑ 2 )  <  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 ) ) ) | 
						
							| 69 | 41 68 | mpbird | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑆  <  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 70 | 56 61 | ltnled | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑆  <  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ↔  ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑆 ) ) | 
						
							| 71 | 69 70 | mpbid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑆 ) | 
						
							| 72 | 10 | breq2i | ⊢ ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑆  ↔  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 73 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑦  ≤  𝑤 )  ∧  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ∈  ℝ )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤 ) ) | 
						
							| 74 | 44 46 53 61 73 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤 ) ) | 
						
							| 75 | 9 | raleqi | ⊢ ( ∀ 𝑤  ∈  𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤  ↔  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤 ) | 
						
							| 76 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V | 
						
							| 77 | 76 | rgenw | ⊢ ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V | 
						
							| 78 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 79 |  | breq2 | ⊢ ( 𝑤  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤  ↔  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 80 | 78 79 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V  →  ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 81 | 77 80 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 82 | 75 81 | bitri | ⊢ ( ∀ 𝑤  ∈  𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 83 | 74 82 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 84 | 72 83 | bitrid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  𝑆  ↔  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 85 | 71 84 | mtbid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ¬  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 86 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝑌 ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ↔  ¬  ∀ 𝑦  ∈  𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 87 | 85 86 | sylibr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑦  ∈  𝑌 ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 88 | 61 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ∈  ℝ ) | 
						
							| 89 |  | cphngp | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  NrmGrp ) | 
						
							| 90 | 4 89 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmGrp ) | 
						
							| 91 |  | ngpms | ⊢ ( 𝑈  ∈  NrmGrp  →  𝑈  ∈  MetSp ) | 
						
							| 92 | 1 11 | msmet | ⊢ ( 𝑈  ∈  MetSp  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 93 | 90 91 92 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 95 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 96 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 97 | 1 96 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 98 | 14 97 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑌  ⊆  𝑋 ) | 
						
							| 99 | 98 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 100 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 101 | 94 95 99 100 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 102 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  0  ≤  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 103 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝑦 ) ) | 
						
							| 104 | 94 95 99 103 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  0  ≤  ( 𝐴 𝐷 𝑦 ) ) | 
						
							| 105 | 88 101 102 104 | le2sqd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝐴 𝐷 𝑦 )  ↔  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) ) | 
						
							| 106 | 11 | oveqi | ⊢ ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑦 ) | 
						
							| 107 | 95 99 | ovresd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑦 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 108 | 106 107 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 109 | 90 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝑈  ∈  NrmGrp ) | 
						
							| 110 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 111 | 3 1 2 110 | ngpds | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑦 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 112 | 109 95 99 111 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑦 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 113 | 108 112 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 114 | 113 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝐴 𝐷 𝑦 )  ↔  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 115 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 )  =  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 116 | 115 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ↑ 2 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ↔  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) ) | 
						
							| 117 | 105 114 116 | 3bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ↔  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) ) | 
						
							| 118 | 117 | notbid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ↔  ¬  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) ) | 
						
							| 119 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ∈  ℝ ) | 
						
							| 120 | 101 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 121 | 119 120 | letrid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝑆 ↑ 2 )  +  𝑟 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ∨  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 122 | 121 | ord | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ¬  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ≤  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 123 | 118 122 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 124 | 123 | reximdva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  𝑌 ¬  ( √ ‘ ( ( 𝑆 ↑ 2 )  +  𝑟 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  →  ∃ 𝑦  ∈  𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 125 | 87 124 | mpd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑦  ∈  𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 126 |  | rabn0 | ⊢ ( { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ≠  ∅  ↔  ∃ 𝑦  ∈  𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 127 | 125 126 | sylibr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  ≠  ∅ ) | 
						
							| 128 | 127 | necomd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∅  ≠  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 129 | 128 | neneqd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ¬  ∅  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 130 | 129 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑟  ∈  ℝ+ ∅  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 131 | 12 | eleq2i | ⊢ ( ∅  ∈  𝐹  ↔  ∅  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 132 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 133 | 22 | elrnmpt | ⊢ ( ∅  ∈  V  →  ( ∅  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  ↔  ∃ 𝑟  ∈  ℝ+ ∅  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 134 | 132 133 | ax-mp | ⊢ ( ∅  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  ↔  ∃ 𝑟  ∈  ℝ+ ∅  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 135 | 131 134 | bitri | ⊢ ( ∅  ∈  𝐹  ↔  ∃ 𝑟  ∈  ℝ+ ∅  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 136 | 130 135 | sylnibr | ⊢ ( 𝜑  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 137 |  | df-nel | ⊢ ( ∅  ∉  𝐹  ↔  ¬  ∅  ∈  𝐹 ) | 
						
							| 138 | 136 137 | sylibr | ⊢ ( 𝜑  →  ∅  ∉  𝐹 ) | 
						
							| 139 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 140 | 139 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 141 | 37 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  𝑟  ∈  ℝ ) | 
						
							| 142 | 120 140 141 | lesubadd2d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 143 | 142 | rabbidva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 }  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 144 | 143 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 145 | 144 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 146 | 12 145 | eqtr4id | ⊢ ( 𝜑  →  𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) | 
						
							| 147 | 146 | eleq2d | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐹  ↔  𝑢  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) ) | 
						
							| 148 |  | breq2 | ⊢ ( 𝑟  =  𝑠  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟  ↔  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 ) ) | 
						
							| 149 | 148 | rabbidv | ⊢ ( 𝑟  =  𝑠  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 }  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 } ) | 
						
							| 150 | 149 | cbvmptv | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  =  ( 𝑠  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 } ) | 
						
							| 151 | 150 | elrnmpt | ⊢ ( 𝑢  ∈  V  →  ( 𝑢  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  ↔  ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 } ) ) | 
						
							| 152 | 151 | elv | ⊢ ( 𝑢  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  ↔  ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 } ) | 
						
							| 153 | 147 152 | bitrdi | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐹  ↔  ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 } ) ) | 
						
							| 154 | 146 | eleq2d | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝐹  ↔  𝑣  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) ) | 
						
							| 155 |  | breq2 | ⊢ ( 𝑟  =  𝑡  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟  ↔  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) ) | 
						
							| 156 | 155 | rabbidv | ⊢ ( 𝑟  =  𝑡  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 }  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) | 
						
							| 157 | 156 | cbvmptv | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  =  ( 𝑡  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) | 
						
							| 158 | 157 | elrnmpt | ⊢ ( 𝑣  ∈  V  →  ( 𝑣  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  ↔  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) ) | 
						
							| 159 | 158 | elv | ⊢ ( 𝑣  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  ↔  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) | 
						
							| 160 | 154 159 | bitrdi | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝐹  ↔  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) ) | 
						
							| 161 | 153 160 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐹  ∧  𝑣  ∈  𝐹 )  ↔  ( ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) ) ) | 
						
							| 162 |  | reeanv | ⊢ ( ∃ 𝑠  ∈  ℝ+ ∃ 𝑡  ∈  ℝ+ ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  ↔  ( ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) ) | 
						
							| 163 | 93 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 164 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 165 | 5 97 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 167 | 166 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 168 | 163 164 167 100 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 169 | 168 | resqcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 170 | 32 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 171 | 169 170 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 172 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝑠  ∈  ℝ+ ) | 
						
							| 173 | 172 | rpred | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝑠  ∈  ℝ ) | 
						
							| 174 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝑡  ∈  ℝ+ ) | 
						
							| 175 | 174 | rpred | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  𝑡  ∈  ℝ ) | 
						
							| 176 |  | lemin | ⊢ ( ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ  ∧  𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  ↔  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) ) ) | 
						
							| 177 | 171 173 175 176 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  ↔  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) ) ) | 
						
							| 178 | 177 | rabbidva | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  =  { 𝑦  ∈  𝑌  ∣  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) } ) | 
						
							| 179 |  | ifcl | ⊢ ( ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ )  →  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  ∈  ℝ+ ) | 
						
							| 180 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 181 |  | rabexg | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  V ) | 
						
							| 182 | 180 181 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  V ) | 
						
							| 183 |  | eqid | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) | 
						
							| 184 |  | breq2 | ⊢ ( 𝑟  =  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  →  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟  ↔  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) ) ) | 
						
							| 185 | 184 | rabbidv | ⊢ ( 𝑟  =  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 }  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) } ) | 
						
							| 186 | 183 185 | elrnmpt1s | ⊢ ( ( if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 )  ∈  ℝ+  ∧  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  V )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) | 
						
							| 187 | 179 182 186 | syl2an2 | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) | 
						
							| 188 | 146 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑟 } ) ) | 
						
							| 189 | 187 188 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  if ( 𝑠  ≤  𝑡 ,  𝑠 ,  𝑡 ) }  ∈  𝐹 ) | 
						
							| 190 | 178 189 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) }  ∈  𝐹 ) | 
						
							| 191 |  | ineq12 | ⊢ ( ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝑢  ∩  𝑣 )  =  ( { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∩  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } ) ) | 
						
							| 192 |  | inrab | ⊢ ( { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∩  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  =  { 𝑦  ∈  𝑌  ∣  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) } | 
						
							| 193 | 191 192 | eqtrdi | ⊢ ( ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝑢  ∩  𝑣 )  =  { 𝑦  ∈  𝑌  ∣  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) } ) | 
						
							| 194 | 193 | eleq1d | ⊢ ( ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( ( 𝑢  ∩  𝑣 )  ∈  𝐹  ↔  { 𝑦  ∈  𝑌  ∣  ( ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠  ∧  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 ) }  ∈  𝐹 ) ) | 
						
							| 195 | 190 194 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  ( ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝑢  ∩  𝑣 )  ∈  𝐹 ) ) | 
						
							| 196 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 197 | 196 | inex1 | ⊢ ( 𝑢  ∩  𝑣 )  ∈  V | 
						
							| 198 | 197 | pwid | ⊢ ( 𝑢  ∩  𝑣 )  ∈  𝒫  ( 𝑢  ∩  𝑣 ) | 
						
							| 199 |  | inelcm | ⊢ ( ( ( 𝑢  ∩  𝑣 )  ∈  𝐹  ∧  ( 𝑢  ∩  𝑣 )  ∈  𝒫  ( 𝑢  ∩  𝑣 ) )  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) | 
						
							| 200 | 198 199 | mpan2 | ⊢ ( ( 𝑢  ∩  𝑣 )  ∈  𝐹  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) | 
						
							| 201 | 195 200 | syl6 | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℝ+  ∧  𝑡  ∈  ℝ+ ) )  →  ( ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) | 
						
							| 202 | 201 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  ℝ+ ∃ 𝑡  ∈  ℝ+ ( 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) | 
						
							| 203 | 162 202 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑠  ∈  ℝ+ 𝑢  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑠 }  ∧  ∃ 𝑡  ∈  ℝ+ 𝑣  =  { 𝑦  ∈  𝑌  ∣  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ≤  𝑡 } )  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) | 
						
							| 204 | 161 203 | sylbid | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐹  ∧  𝑣  ∈  𝐹 )  →  ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) | 
						
							| 205 | 204 | ralrimivv | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝐹 ∀ 𝑣  ∈  𝐹 ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) | 
						
							| 206 | 30 138 205 | 3jca | ⊢ ( 𝜑  →  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑢  ∈  𝐹 ∀ 𝑣  ∈  𝐹 ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) | 
						
							| 207 |  | isfbas | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  ( 𝐹  ∈  ( fBas ‘ 𝑌 )  ↔  ( 𝐹  ⊆  𝒫  𝑌  ∧  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑢  ∈  𝐹 ∀ 𝑣  ∈  𝐹 ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) ) ) | 
						
							| 208 | 5 207 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( fBas ‘ 𝑌 )  ↔  ( 𝐹  ⊆  𝒫  𝑌  ∧  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑢  ∈  𝐹 ∀ 𝑣  ∈  𝐹 ( 𝐹  ∩  𝒫  ( 𝑢  ∩  𝑣 ) )  ≠  ∅ ) ) ) ) | 
						
							| 209 | 20 206 208 | mpbir2and | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑌 ) ) |