| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | minvec.f | ⊢ 𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  𝑠  ∈  ℝ+ ) | 
						
							| 14 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 15 |  | rpexpcl | ⊢ ( ( 𝑠  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( 𝑠 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 16 | 13 14 15 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  ( 𝑠 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 17 | 16 | rphalfcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  ( ( 𝑠 ↑ 2 )  /  2 )  ∈  ℝ+ ) | 
						
							| 18 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 19 |  | nnrp | ⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ 4  ∈  ℝ+ | 
						
							| 21 |  | rpdivcl | ⊢ ( ( ( ( 𝑠 ↑ 2 )  /  2 )  ∈  ℝ+  ∧  4  ∈  ℝ+ )  →  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  ∈  ℝ+ ) | 
						
							| 22 | 17 20 21 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  ∈  ℝ+ ) | 
						
							| 23 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 24 |  | rabexg | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  V ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  V ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑟  =  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  →  ( ( 𝑆 ↑ 2 )  +  𝑟 )  =  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( 𝑟  =  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) | 
						
							| 29 | 28 | rabbidv | ⊢ ( 𝑟  =  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ) | 
						
							| 30 | 26 29 | elrnmpt1s | ⊢ ( ( ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  ∈  ℝ+  ∧  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  V )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 31 | 22 25 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 32 | 31 12 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  𝐹 ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑦  =  𝑢  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 𝐷 𝑢 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑦  =  𝑢  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  =  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 ) ) | 
						
							| 35 | 34 | breq1d | ⊢ ( 𝑦  =  𝑢  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) )  ↔  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) | 
						
							| 36 | 35 | elrab | ⊢ ( 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ↔  ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 𝐷 𝑣 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  =  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 ) ) | 
						
							| 39 | 38 | breq1d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) )  ↔  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) | 
						
							| 40 | 39 | elrab | ⊢ ( 𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ↔  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) | 
						
							| 41 | 36 40 | anbi12i | ⊢ ( ( 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∧  𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } )  ↔  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) ) | 
						
							| 42 |  | simprll | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑢  ∈  𝑌 ) | 
						
							| 43 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑣  ∈  𝑌 ) | 
						
							| 44 | 42 43 | ovresd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  =  ( 𝑢 𝐷 𝑣 ) ) | 
						
							| 45 |  | cphngp | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  NrmGrp ) | 
						
							| 46 |  | ngpms | ⊢ ( 𝑈  ∈  NrmGrp  →  𝑈  ∈  MetSp ) | 
						
							| 47 | 1 11 | msmet | ⊢ ( 𝑈  ∈  MetSp  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 48 | 4 45 46 47 | 4syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 50 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 51 | 1 50 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 52 | 5 51 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 54 | 53 42 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑢  ∈  𝑋 ) | 
						
							| 55 | 53 43 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑣  ∈  𝑋 ) | 
						
							| 56 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( 𝑢 𝐷 𝑣 )  ∈  ℝ ) | 
						
							| 57 | 49 54 55 56 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑢 𝐷 𝑣 )  ∈  ℝ ) | 
						
							| 58 | 57 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑢 𝐷 𝑣 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 59 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑠 ↑ 2 )  /  2 )  ∈  ℝ+ ) | 
						
							| 60 | 59 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑠 ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 61 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑠 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 62 | 61 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑠 ↑ 2 )  ∈  ℝ ) | 
						
							| 63 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑈  ∈  ℂPreHil ) | 
						
							| 64 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 65 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 66 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 67 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  ∈  ℝ+ ) | 
						
							| 68 | 67 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 )  ∈  ℝ ) | 
						
							| 69 | 67 | rpge0d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  0  ≤  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) | 
						
							| 70 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) | 
						
							| 71 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) | 
						
							| 72 | 1 2 3 63 64 65 66 8 9 10 11 68 69 42 43 70 71 | minveclem2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑢 𝐷 𝑣 ) ↑ 2 )  ≤  ( 4  ·  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) | 
						
							| 73 | 59 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑠 ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 74 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 75 | 74 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  4  ∈  ℂ ) | 
						
							| 76 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 77 | 76 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  4  ≠  0 ) | 
						
							| 78 | 73 75 77 | divcan2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 4  ·  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) )  =  ( ( 𝑠 ↑ 2 )  /  2 ) ) | 
						
							| 79 | 72 78 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑢 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑠 ↑ 2 )  /  2 ) ) | 
						
							| 80 |  | rphalflt | ⊢ ( ( 𝑠 ↑ 2 )  ∈  ℝ+  →  ( ( 𝑠 ↑ 2 )  /  2 )  <  ( 𝑠 ↑ 2 ) ) | 
						
							| 81 | 61 80 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑠 ↑ 2 )  /  2 )  <  ( 𝑠 ↑ 2 ) ) | 
						
							| 82 | 58 60 62 79 81 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑢 𝐷 𝑣 ) ↑ 2 )  <  ( 𝑠 ↑ 2 ) ) | 
						
							| 83 |  | rpre | ⊢ ( 𝑠  ∈  ℝ+  →  𝑠  ∈  ℝ ) | 
						
							| 84 | 83 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 85 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  0  ≤  ( 𝑢 𝐷 𝑣 ) ) | 
						
							| 86 | 49 54 55 85 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  0  ≤  ( 𝑢 𝐷 𝑣 ) ) | 
						
							| 87 |  | rpge0 | ⊢ ( 𝑠  ∈  ℝ+  →  0  ≤  𝑠 ) | 
						
							| 88 | 87 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  0  ≤  𝑠 ) | 
						
							| 89 | 57 84 86 88 | lt2sqd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( ( 𝑢 𝐷 𝑣 )  <  𝑠  ↔  ( ( 𝑢 𝐷 𝑣 ) ↑ 2 )  <  ( 𝑠 ↑ 2 ) ) ) | 
						
							| 90 | 82 89 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑢 𝐷 𝑣 )  <  𝑠 ) | 
						
							| 91 | 44 90 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( ( 𝑢  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑢 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) )  ∧  ( 𝑣  ∈  𝑌  ∧  ( ( 𝐴 𝐷 𝑣 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) ) ) )  →  ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 92 | 41 91 | sylan2b | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  ∧  ( 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∧  𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ) )  →  ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 93 | 92 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  ∀ 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ∀ 𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 94 |  | raleq | ⊢ ( 𝑤  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  →  ( ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠  ↔  ∀ 𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) ) | 
						
							| 95 | 94 | raleqbi1dv | ⊢ ( 𝑤  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  →  ( ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠  ↔  ∀ 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ∀ 𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) ) | 
						
							| 96 | 95 | rspcev | ⊢ ( ( { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) }  ∈  𝐹  ∧  ∀ 𝑢  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ∀ 𝑣  ∈  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  ( ( ( 𝑠 ↑ 2 )  /  2 )  /  4 ) ) } ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 )  →  ∃ 𝑤  ∈  𝐹 ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 97 | 32 93 96 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ+ )  →  ∃ 𝑤  ∈  𝐹 ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 98 | 97 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ℝ+ ∃ 𝑤  ∈  𝐹 ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) | 
						
							| 99 | 1 2 3 4 5 6 7 8 9 10 11 | minveclem3a | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ 𝑌 ) ) | 
						
							| 100 |  | cmetmet | ⊢ ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ 𝑌 )  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( Met ‘ 𝑌 ) ) | 
						
							| 101 |  | metxmet | ⊢ ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( Met ‘ 𝑌 )  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 102 | 99 100 101 | 3syl | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 9 10 11 12 | minveclem3b | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 104 |  | fgcfil | ⊢ ( ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝐹  ∈  ( fBas ‘ 𝑌 ) )  →  ( ( 𝑌 filGen 𝐹 )  ∈  ( CauFil ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ↔  ∀ 𝑠  ∈  ℝ+ ∃ 𝑤  ∈  𝐹 ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) ) | 
						
							| 105 | 102 103 104 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑌 filGen 𝐹 )  ∈  ( CauFil ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  ↔  ∀ 𝑠  ∈  ℝ+ ∃ 𝑤  ∈  𝐹 ∀ 𝑢  ∈  𝑤 ∀ 𝑣  ∈  𝑤 ( 𝑢 ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) 𝑣 )  <  𝑠 ) ) | 
						
							| 106 | 98 105 | mpbird | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ∈  ( CauFil ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) |