| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | minvec.f | ⊢ 𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 13 |  | minvec.p | ⊢ 𝑃  =  ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 14 |  | ovex | ⊢ ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∈  V | 
						
							| 15 | 14 | uniex | ⊢ ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∈  V | 
						
							| 16 | 15 | snid | ⊢ ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∈  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } | 
						
							| 17 |  | cphngp | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  NrmGrp ) | 
						
							| 18 |  | ngpxms | ⊢ ( 𝑈  ∈  NrmGrp  →  𝑈  ∈  ∞MetSp ) | 
						
							| 19 | 4 17 18 | 3syl | ⊢ ( 𝜑  →  𝑈  ∈  ∞MetSp ) | 
						
							| 20 | 8 1 11 | xmstopn | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝑌 )  =  ( ( MetOpen ‘ 𝐷 )  ↾t  𝑌 ) ) | 
						
							| 23 | 1 11 | xmsxmet | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 24 | 19 23 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 25 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 26 | 1 25 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 27 | 5 26 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 28 |  | eqid | ⊢ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  =  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) | 
						
							| 29 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 30 |  | eqid | ⊢ ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) | 
						
							| 31 | 28 29 30 | metrest | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ⊆  𝑋 )  →  ( ( MetOpen ‘ 𝐷 )  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 32 | 24 27 31 | syl2anc | ⊢ ( 𝜑  →  ( ( MetOpen ‘ 𝐷 )  ↾t  𝑌 )  =  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 33 | 22 32 | eqtr2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  =  ( 𝐽  ↾t  𝑌 ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 | minveclem3b | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 35 |  | fgcl | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝐹 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 37 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 39 |  | trfg | ⊢ ( ( ( 𝑌 filGen 𝐹 )  ∈  ( Fil ‘ 𝑌 )  ∧  𝑌  ⊆  𝑋  ∧  𝑋  ∈  V )  →  ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) )  ↾t  𝑌 )  =  ( 𝑌 filGen 𝐹 ) ) | 
						
							| 40 | 36 27 38 39 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) )  ↾t  𝑌 )  =  ( 𝑌 filGen 𝐹 ) ) | 
						
							| 41 |  | fgabs | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑌 )  ∧  𝑌  ⊆  𝑋 )  →  ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) )  =  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 42 | 34 27 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) )  =  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) )  ↾t  𝑌 )  =  ( ( 𝑋 filGen 𝐹 )  ↾t  𝑌 ) ) | 
						
							| 44 | 40 43 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  =  ( ( 𝑋 filGen 𝐹 )  ↾t  𝑌 ) ) | 
						
							| 45 | 33 44 | oveq12d | ⊢ ( 𝜑  →  ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  fLim  ( 𝑌 filGen 𝐹 ) )  =  ( ( 𝐽  ↾t  𝑌 )  fLim  ( ( 𝑋 filGen 𝐹 )  ↾t  𝑌 ) ) ) | 
						
							| 46 |  | xmstps | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝑈  ∈  TopSp ) | 
						
							| 47 | 19 46 | syl | ⊢ ( 𝜑  →  𝑈  ∈  TopSp ) | 
						
							| 48 | 1 8 | istps | ⊢ ( 𝑈  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 50 |  | fbsspw | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑌 )  →  𝐹  ⊆  𝒫  𝑌 ) | 
						
							| 51 | 34 50 | syl | ⊢ ( 𝜑  →  𝐹  ⊆  𝒫  𝑌 ) | 
						
							| 52 | 27 | sspwd | ⊢ ( 𝜑  →  𝒫  𝑌  ⊆  𝒫  𝑋 ) | 
						
							| 53 | 51 52 | sstrd | ⊢ ( 𝜑  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 54 |  | fbasweak | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹  ⊆  𝒫  𝑋  ∧  𝑋  ∈  V )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 55 | 34 53 38 54 | syl3anc | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 56 |  | fgcl | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 58 |  | filfbas | ⊢ ( ( 𝑌 filGen 𝐹 )  ∈  ( Fil ‘ 𝑌 )  →  ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 59 | 34 35 58 | 3syl | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 60 |  | fbsspw | ⊢ ( ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝐹 )  ⊆  𝒫  𝑌 ) | 
						
							| 61 | 59 60 | syl | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ⊆  𝒫  𝑌 ) | 
						
							| 62 | 61 52 | sstrd | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ⊆  𝒫  𝑋 ) | 
						
							| 63 |  | fbasweak | ⊢ ( ( ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑌 )  ∧  ( 𝑌 filGen 𝐹 )  ⊆  𝒫  𝑋  ∧  𝑋  ∈  V )  →  ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 64 | 59 62 38 63 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 65 |  | ssfg | ⊢ ( ( 𝑌 filGen 𝐹 )  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑌 filGen 𝐹 )  ⊆  ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ⊆  ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) | 
						
							| 67 | 66 42 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ⊆  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 68 |  | filtop | ⊢ ( ( 𝑌 filGen 𝐹 )  ∈  ( Fil ‘ 𝑌 )  →  𝑌  ∈  ( 𝑌 filGen 𝐹 ) ) | 
						
							| 69 | 36 68 | syl | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑌 filGen 𝐹 ) ) | 
						
							| 70 | 67 69 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 71 |  | flimrest | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 )  ∧  𝑌  ∈  ( 𝑋 filGen 𝐹 ) )  →  ( ( 𝐽  ↾t  𝑌 )  fLim  ( ( 𝑋 filGen 𝐹 )  ↾t  𝑌 ) )  =  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) | 
						
							| 72 | 49 57 70 71 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐽  ↾t  𝑌 )  fLim  ( ( 𝑋 filGen 𝐹 )  ↾t  𝑌 ) )  =  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) | 
						
							| 73 | 45 72 | eqtrd | ⊢ ( 𝜑  →  ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  fLim  ( 𝑌 filGen 𝐹 ) )  =  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) | 
						
							| 74 | 1 2 3 4 5 6 7 8 9 10 11 | minveclem3a | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ 𝑌 ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 8 9 10 11 12 | minveclem3 | ⊢ ( 𝜑  →  ( 𝑌 filGen 𝐹 )  ∈  ( CauFil ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) ) | 
						
							| 76 | 30 | cmetcvg | ⊢ ( ( ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) )  ∈  ( CMet ‘ 𝑌 )  ∧  ( 𝑌 filGen 𝐹 )  ∈  ( CauFil ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) ) )  →  ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  fLim  ( 𝑌 filGen 𝐹 ) )  ≠  ∅ ) | 
						
							| 77 | 74 75 76 | syl2anc | ⊢ ( 𝜑  →  ( ( MetOpen ‘ ( 𝐷  ↾  ( 𝑌  ×  𝑌 ) ) )  fLim  ( 𝑌 filGen 𝐹 ) )  ≠  ∅ ) | 
						
							| 78 | 73 77 | eqnetrrd | ⊢ ( 𝜑  →  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ≠  ∅ ) | 
						
							| 79 | 78 | neneqd | ⊢ ( 𝜑  →  ¬  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  ∅ ) | 
						
							| 80 |  | inss1 | ⊢ ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ⊆  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 81 | 29 | methaus | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( MetOpen ‘ 𝐷 )  ∈  Haus ) | 
						
							| 82 | 23 81 | syl | ⊢ ( 𝑈  ∈  ∞MetSp  →  ( MetOpen ‘ 𝐷 )  ∈  Haus ) | 
						
							| 83 | 20 82 | eqeltrd | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝐽  ∈  Haus ) | 
						
							| 84 |  | hausflimi | ⊢ ( 𝐽  ∈  Haus  →  ∃* 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 85 | 19 83 84 | 3syl | ⊢ ( 𝜑  →  ∃* 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 86 |  | ssn0 | ⊢ ( ( ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ⊆  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∧  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ≠  ∅ )  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≠  ∅ ) | 
						
							| 87 | 80 78 86 | sylancr | ⊢ ( 𝜑  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≠  ∅ ) | 
						
							| 88 |  | n0moeu | ⊢ ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≠  ∅  →  ( ∃* 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ↔  ∃! 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) ) | 
						
							| 89 | 87 88 | syl | ⊢ ( 𝜑  →  ( ∃* 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ↔  ∃! 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) ) | 
						
							| 90 | 85 89 | mpbid | ⊢ ( 𝜑  →  ∃! 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 91 |  | euen1b | ⊢ ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≈  1o  ↔  ∃! 𝑥 𝑥  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 92 | 90 91 | sylibr | ⊢ ( 𝜑  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≈  1o ) | 
						
							| 93 |  | en1b | ⊢ ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ≈  1o  ↔  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) | 
						
							| 94 | 92 93 | sylib | ⊢ ( 𝜑  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) | 
						
							| 95 | 80 94 | sseqtrid | ⊢ ( 𝜑  →  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ⊆  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) | 
						
							| 96 |  | sssn | ⊢ ( ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  ⊆  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) }  ↔  ( ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  ∅  ∨  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) ) | 
						
							| 97 | 95 96 | sylib | ⊢ ( 𝜑  →  ( ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  ∅  ∨  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) ) | 
						
							| 98 | 97 | ord | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  ∅  →  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) ) | 
						
							| 99 | 79 98 | mpd | ⊢ ( 𝜑  →  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 )  =  { ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) } ) | 
						
							| 100 | 16 99 | eleqtrrid | ⊢ ( 𝜑  →  ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∈  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) | 
						
							| 101 | 13 100 | eqeltrid | ⊢ ( 𝜑  →  𝑃  ∈  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) |