Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
12 |
|
minvec.f |
⊢ 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
13 |
|
minvec.p |
⊢ 𝑃 = ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) |
14 |
|
ovex |
⊢ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∈ V |
15 |
14
|
uniex |
⊢ ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∈ V |
16 |
15
|
snid |
⊢ ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∈ { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } |
17 |
|
cphngp |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp ) |
18 |
|
ngpxms |
⊢ ( 𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp ) |
19 |
4 17 18
|
3syl |
⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |
20 |
8 1 11
|
xmstopn |
⊢ ( 𝑈 ∈ ∞MetSp → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) = ( ( MetOpen ‘ 𝐷 ) ↾t 𝑌 ) ) |
23 |
1 11
|
xmsxmet |
⊢ ( 𝑈 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
24 |
19 23
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
25 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
26 |
1 25
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
28 |
|
eqid |
⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) |
29 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
30 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
31 |
28 29 30
|
metrest |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( MetOpen ‘ 𝐷 ) ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
32 |
24 27 31
|
syl2anc |
⊢ ( 𝜑 → ( ( MetOpen ‘ 𝐷 ) ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
33 |
22 32
|
eqtr2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( 𝐽 ↾t 𝑌 ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12
|
minveclem3b |
⊢ ( 𝜑 → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
35 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) ) |
37 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
38 |
37
|
a1i |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
39 |
|
trfg |
⊢ ( ( ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↾t 𝑌 ) = ( 𝑌 filGen 𝐹 ) ) |
40 |
36 27 38 39
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↾t 𝑌 ) = ( 𝑌 filGen 𝐹 ) ) |
41 |
|
fgabs |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
42 |
34 27 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↾t 𝑌 ) = ( ( 𝑋 filGen 𝐹 ) ↾t 𝑌 ) ) |
44 |
40 43
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) = ( ( 𝑋 filGen 𝐹 ) ↾t 𝑌 ) ) |
45 |
33 44
|
oveq12d |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑌 filGen 𝐹 ) ) = ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝐹 ) ↾t 𝑌 ) ) ) |
46 |
|
xmstps |
⊢ ( 𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp ) |
47 |
19 46
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ TopSp ) |
48 |
1 8
|
istps |
⊢ ( 𝑈 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
49 |
47 48
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
50 |
|
fbsspw |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ 𝒫 𝑌 ) |
51 |
34 50
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝑌 ) |
52 |
27
|
sspwd |
⊢ ( 𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
53 |
51 52
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝑋 ) |
54 |
|
fbasweak |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
55 |
34 53 38 54
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
56 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
58 |
|
filfbas |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) |
59 |
34 35 58
|
3syl |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) |
60 |
|
fbsspw |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) |
61 |
59 60
|
syl |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) |
62 |
61 52
|
sstrd |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ) |
63 |
|
fbasweak |
⊢ ( ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
64 |
59 62 38 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
65 |
|
ssfg |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑌 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) |
67 |
66 42
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐹 ) ) |
68 |
|
filtop |
⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝐹 ) ) |
69 |
36 68
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑌 filGen 𝐹 ) ) |
70 |
67 69
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 filGen 𝐹 ) ) |
71 |
|
flimrest |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ ( 𝑋 filGen 𝐹 ) ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝐹 ) ↾t 𝑌 ) ) = ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
72 |
49 57 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝐹 ) ↾t 𝑌 ) ) = ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
73 |
45 72
|
eqtrd |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑌 filGen 𝐹 ) ) = ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
74 |
1 2 3 4 5 6 7 8 9 10 11
|
minveclem3a |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) |
75 |
1 2 3 4 5 6 7 8 9 10 11 12
|
minveclem3 |
⊢ ( 𝜑 → ( 𝑌 filGen 𝐹 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
76 |
30
|
cmetcvg |
⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ∧ ( 𝑌 filGen 𝐹 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑌 filGen 𝐹 ) ) ≠ ∅ ) |
77 |
74 75 76
|
syl2anc |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑌 filGen 𝐹 ) ) ≠ ∅ ) |
78 |
73 77
|
eqnetrrd |
⊢ ( 𝜑 → ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ≠ ∅ ) |
79 |
78
|
neneqd |
⊢ ( 𝜑 → ¬ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = ∅ ) |
80 |
|
inss1 |
⊢ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ⊆ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) |
81 |
29
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) ∈ Haus ) |
82 |
23 81
|
syl |
⊢ ( 𝑈 ∈ ∞MetSp → ( MetOpen ‘ 𝐷 ) ∈ Haus ) |
83 |
20 82
|
eqeltrd |
⊢ ( 𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus ) |
84 |
|
hausflimi |
⊢ ( 𝐽 ∈ Haus → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
85 |
19 83 84
|
3syl |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
86 |
|
ssn0 |
⊢ ( ( ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ⊆ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∧ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ≠ ∅ ) → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≠ ∅ ) |
87 |
80 78 86
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≠ ∅ ) |
88 |
|
n0moeu |
⊢ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≠ ∅ → ( ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ↔ ∃! 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) ) |
89 |
87 88
|
syl |
⊢ ( 𝜑 → ( ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ↔ ∃! 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) ) |
90 |
85 89
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
91 |
|
euen1b |
⊢ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≈ 1o ↔ ∃! 𝑥 𝑥 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
92 |
90 91
|
sylibr |
⊢ ( 𝜑 → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≈ 1o ) |
93 |
|
en1b |
⊢ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ≈ 1o ↔ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) |
94 |
92 93
|
sylib |
⊢ ( 𝜑 → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) |
95 |
80 94
|
sseqtrid |
⊢ ( 𝜑 → ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ⊆ { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) |
96 |
|
sssn |
⊢ ( ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ⊆ { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ↔ ( ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = ∅ ∨ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) ) |
97 |
95 96
|
sylib |
⊢ ( 𝜑 → ( ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = ∅ ∨ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) ) |
98 |
97
|
ord |
⊢ ( 𝜑 → ( ¬ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = ∅ → ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) ) |
99 |
79 98
|
mpd |
⊢ ( 𝜑 → ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) = { ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) } ) |
100 |
16 99
|
eleqtrrid |
⊢ ( 𝜑 → ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
101 |
13 100
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |