| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
| 2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
| 4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
| 5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
| 7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
| 9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
| 10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
| 11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 12 |
|
minvec.f |
⊢ 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
| 13 |
|
minvec.p |
⊢ 𝑃 = ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 15 |
1 14
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minveclem4a |
⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
| 18 |
17
|
elin2d |
⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) |
| 19 |
16 18
|
sseldd |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |