Metamath Proof Explorer


Theorem minveclem4b

Description: Lemma for minvec . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x 𝑋 = ( Base ‘ 𝑈 )
minvec.m = ( -g𝑈 )
minvec.n 𝑁 = ( norm ‘ 𝑈 )
minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
minvec.a ( 𝜑𝐴𝑋 )
minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
minvec.f 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
minvec.p 𝑃 = ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) )
Assertion minveclem4b ( 𝜑𝑃𝑋 )

Proof

Step Hyp Ref Expression
1 minvec.x 𝑋 = ( Base ‘ 𝑈 )
2 minvec.m = ( -g𝑈 )
3 minvec.n 𝑁 = ( norm ‘ 𝑈 )
4 minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
5 minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
6 minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
7 minvec.a ( 𝜑𝐴𝑋 )
8 minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
9 minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
10 minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
11 minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
12 minvec.f 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
13 minvec.p 𝑃 = ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) )
14 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
15 1 14 lssss ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌𝑋 )
16 5 15 syl ( 𝜑𝑌𝑋 )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 minveclem4a ( 𝜑𝑃 ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) )
18 17 elin2d ( 𝜑𝑃𝑌 )
19 16 18 sseldd ( 𝜑𝑃𝑋 )