Description: Lemma for minvec . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minvec.x | ⊢ 𝑋 = ( Base ‘ 𝑈 ) | |
minvec.m | ⊢ − = ( -g ‘ 𝑈 ) | ||
minvec.n | ⊢ 𝑁 = ( norm ‘ 𝑈 ) | ||
minvec.u | ⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) | ||
minvec.y | ⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) | ||
minvec.w | ⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) | ||
minvec.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
minvec.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) | ||
minvec.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) | ||
minvec.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
minvec.d | ⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
minvec.f | ⊢ 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) | ||
minvec.p | ⊢ 𝑃 = ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) | ||
Assertion | minveclem4b | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | ⊢ 𝑋 = ( Base ‘ 𝑈 ) | |
2 | minvec.m | ⊢ − = ( -g ‘ 𝑈 ) | |
3 | minvec.n | ⊢ 𝑁 = ( norm ‘ 𝑈 ) | |
4 | minvec.u | ⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) | |
5 | minvec.y | ⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) | |
6 | minvec.w | ⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) | |
7 | minvec.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
8 | minvec.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) | |
9 | minvec.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) | |
10 | minvec.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
11 | minvec.d | ⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) | |
12 | minvec.f | ⊢ 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) | |
13 | minvec.p | ⊢ 𝑃 = ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) | |
14 | eqid | ⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) | |
15 | 1 14 | lssss | ⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minveclem4a | ⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
18 | 17 | elin2d | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) |
19 | 16 18 | sseldd | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |