Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
β’ π = ( Base β π ) |
2 |
|
minvec.m |
β’ β = ( -g β π ) |
3 |
|
minvec.n |
β’ π = ( norm β π ) |
4 |
|
minvec.u |
β’ ( π β π β βPreHil ) |
5 |
|
minvec.y |
β’ ( π β π β ( LSubSp β π ) ) |
6 |
|
minvec.w |
β’ ( π β ( π βΎs π ) β CMetSp ) |
7 |
|
minvec.a |
β’ ( π β π΄ β π ) |
8 |
|
minvec.j |
β’ π½ = ( TopOpen β π ) |
9 |
|
minvec.r |
β’ π
= ran ( π¦ β π β¦ ( π β ( π΄ β π¦ ) ) ) |
10 |
|
minvec.s |
β’ π = inf ( π
, β , < ) |
11 |
|
minvec.d |
β’ π· = ( ( dist β π ) βΎ ( π Γ π ) ) |
12 |
|
minvec.f |
β’ πΉ = ran ( π β β+ β¦ { π¦ β π β£ ( ( π΄ π· π¦ ) β 2 ) β€ ( ( π β 2 ) + π ) } ) |
13 |
|
minvec.p |
β’ π = βͺ ( π½ fLim ( π filGen πΉ ) ) |
14 |
|
eqid |
β’ ( LSubSp β π ) = ( LSubSp β π ) |
15 |
1 14
|
lssss |
β’ ( π β ( LSubSp β π ) β π β π ) |
16 |
5 15
|
syl |
β’ ( π β π β π ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minveclem4a |
β’ ( π β π β ( ( π½ fLim ( π filGen πΉ ) ) β© π ) ) |
18 |
17
|
elin2d |
β’ ( π β π β π ) |
19 |
16 18
|
sseldd |
β’ ( π β π β π ) |