Metamath Proof Explorer


Theorem minveclem4b

Description: Lemma for minvec . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
minvec.f F=ranr+yY|ADy2S2+r
minvec.p P=JfLimXfilGenF
Assertion minveclem4b φPX

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 minvec.f F=ranr+yY|ADy2S2+r
13 minvec.p P=JfLimXfilGenF
14 eqid LSubSpU=LSubSpU
15 1 14 lssss YLSubSpUYX
16 5 15 syl φYX
17 1 2 3 4 5 6 7 8 9 10 11 12 13 minveclem4a φPJfLimXfilGenFY
18 17 elin2d φPY
19 16 18 sseldd φPX