Description: Lemma for minvec . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minvec.x | |- X = ( Base ` U ) |
|
minvec.m | |- .- = ( -g ` U ) |
||
minvec.n | |- N = ( norm ` U ) |
||
minvec.u | |- ( ph -> U e. CPreHil ) |
||
minvec.y | |- ( ph -> Y e. ( LSubSp ` U ) ) |
||
minvec.w | |- ( ph -> ( U |`s Y ) e. CMetSp ) |
||
minvec.a | |- ( ph -> A e. X ) |
||
minvec.j | |- J = ( TopOpen ` U ) |
||
minvec.r | |- R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) |
||
minvec.s | |- S = inf ( R , RR , < ) |
||
minvec.d | |- D = ( ( dist ` U ) |` ( X X. X ) ) |
||
minvec.f | |- F = ran ( r e. RR+ |-> { y e. Y | ( ( A D y ) ^ 2 ) <_ ( ( S ^ 2 ) + r ) } ) |
||
minvec.p | |- P = U. ( J fLim ( X filGen F ) ) |
||
Assertion | minveclem4b | |- ( ph -> P e. X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | |- X = ( Base ` U ) |
|
2 | minvec.m | |- .- = ( -g ` U ) |
|
3 | minvec.n | |- N = ( norm ` U ) |
|
4 | minvec.u | |- ( ph -> U e. CPreHil ) |
|
5 | minvec.y | |- ( ph -> Y e. ( LSubSp ` U ) ) |
|
6 | minvec.w | |- ( ph -> ( U |`s Y ) e. CMetSp ) |
|
7 | minvec.a | |- ( ph -> A e. X ) |
|
8 | minvec.j | |- J = ( TopOpen ` U ) |
|
9 | minvec.r | |- R = ran ( y e. Y |-> ( N ` ( A .- y ) ) ) |
|
10 | minvec.s | |- S = inf ( R , RR , < ) |
|
11 | minvec.d | |- D = ( ( dist ` U ) |` ( X X. X ) ) |
|
12 | minvec.f | |- F = ran ( r e. RR+ |-> { y e. Y | ( ( A D y ) ^ 2 ) <_ ( ( S ^ 2 ) + r ) } ) |
|
13 | minvec.p | |- P = U. ( J fLim ( X filGen F ) ) |
|
14 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
15 | 1 14 | lssss | |- ( Y e. ( LSubSp ` U ) -> Y C_ X ) |
16 | 5 15 | syl | |- ( ph -> Y C_ X ) |
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minveclem4a | |- ( ph -> P e. ( ( J fLim ( X filGen F ) ) i^i Y ) ) |
18 | 17 | elin2d | |- ( ph -> P e. Y ) |
19 | 16 18 | sseldd | |- ( ph -> P e. X ) |