Metamath Proof Explorer


Theorem minveclem4b

Description: Lemma for minvec . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x
|- X = ( Base ` U )
minvec.m
|- .- = ( -g ` U )
minvec.n
|- N = ( norm ` U )
minvec.u
|- ( ph -> U e. CPreHil )
minvec.y
|- ( ph -> Y e. ( LSubSp ` U ) )
minvec.w
|- ( ph -> ( U |`s Y ) e. CMetSp )
minvec.a
|- ( ph -> A e. X )
minvec.j
|- J = ( TopOpen ` U )
minvec.r
|- R = ran ( y e. Y |-> ( N ` ( A .- y ) ) )
minvec.s
|- S = inf ( R , RR , < )
minvec.d
|- D = ( ( dist ` U ) |` ( X X. X ) )
minvec.f
|- F = ran ( r e. RR+ |-> { y e. Y | ( ( A D y ) ^ 2 ) <_ ( ( S ^ 2 ) + r ) } )
minvec.p
|- P = U. ( J fLim ( X filGen F ) )
Assertion minveclem4b
|- ( ph -> P e. X )

Proof

Step Hyp Ref Expression
1 minvec.x
 |-  X = ( Base ` U )
2 minvec.m
 |-  .- = ( -g ` U )
3 minvec.n
 |-  N = ( norm ` U )
4 minvec.u
 |-  ( ph -> U e. CPreHil )
5 minvec.y
 |-  ( ph -> Y e. ( LSubSp ` U ) )
6 minvec.w
 |-  ( ph -> ( U |`s Y ) e. CMetSp )
7 minvec.a
 |-  ( ph -> A e. X )
8 minvec.j
 |-  J = ( TopOpen ` U )
9 minvec.r
 |-  R = ran ( y e. Y |-> ( N ` ( A .- y ) ) )
10 minvec.s
 |-  S = inf ( R , RR , < )
11 minvec.d
 |-  D = ( ( dist ` U ) |` ( X X. X ) )
12 minvec.f
 |-  F = ran ( r e. RR+ |-> { y e. Y | ( ( A D y ) ^ 2 ) <_ ( ( S ^ 2 ) + r ) } )
13 minvec.p
 |-  P = U. ( J fLim ( X filGen F ) )
14 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
15 1 14 lssss
 |-  ( Y e. ( LSubSp ` U ) -> Y C_ X )
16 5 15 syl
 |-  ( ph -> Y C_ X )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 minveclem4a
 |-  ( ph -> P e. ( ( J fLim ( X filGen F ) ) i^i Y ) )
18 17 elin2d
 |-  ( ph -> P e. Y )
19 16 18 sseldd
 |-  ( ph -> P e. X )