Metamath Proof Explorer


Theorem minveclem4

Description: Lemma for minvec . The convergent point of the Cauchy sequence F attains the minimum distance, and so is closer to A than any other point in Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
minvec.f F=ranr+yY|ADy2S2+r
minvec.p P=JfLimXfilGenF
minvec.t T=ADP+S22S2
Assertion minveclem4 φxYyYNA-˙xNA-˙y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 minvec.f F=ranr+yY|ADy2S2+r
13 minvec.p P=JfLimXfilGenF
14 minvec.t T=ADP+S22S2
15 1 2 3 4 5 6 7 8 9 10 11 12 13 minveclem4a φPJfLimXfilGenFY
16 15 elin2d φPY
17 11 oveqi ADP=AdistUX×XP
18 1 2 3 4 5 6 7 8 9 10 11 12 13 minveclem4b φPX
19 7 18 ovresd φAdistUX×XP=AdistUP
20 17 19 eqtrid φADP=AdistUP
21 cphngp UCPreHilUNrmGrp
22 4 21 syl φUNrmGrp
23 eqid distU=distU
24 3 1 2 23 ngpds UNrmGrpAXPXAdistUP=NA-˙P
25 22 7 18 24 syl3anc φAdistUP=NA-˙P
26 20 25 eqtrd φADP=NA-˙P
27 26 adantr φyYADP=NA-˙P
28 ngpms UNrmGrpUMetSp
29 1 11 msmet UMetSpDMetX
30 22 28 29 3syl φDMetX
31 metcl DMetXAXPXADP
32 30 7 18 31 syl3anc φADP
33 32 adantr φyYADP
34 1 2 3 4 5 6 7 8 9 10 minveclem4c φS
35 34 adantr φyYS
36 22 adantr φyYUNrmGrp
37 cphlmod UCPreHilULMod
38 4 37 syl φULMod
39 38 adantr φyYULMod
40 7 adantr φyYAX
41 eqid LSubSpU=LSubSpU
42 1 41 lssss YLSubSpUYX
43 5 42 syl φYX
44 43 sselda φyYyX
45 1 2 lmodvsubcl ULModAXyXA-˙yX
46 39 40 44 45 syl3anc φyYA-˙yX
47 1 3 nmcl UNrmGrpA-˙yXNA-˙y
48 36 46 47 syl2anc φyYNA-˙y
49 34 32 ltnled φS<ADP¬ADPS
50 1 2 3 4 5 6 7 8 9 10 11 12 minveclem3b φFfBasY
51 fbsspw FfBasYF𝒫Y
52 50 51 syl φF𝒫Y
53 43 sspwd φ𝒫Y𝒫X
54 52 53 sstrd φF𝒫X
55 1 fvexi XV
56 55 a1i φXV
57 fbasweak FfBasYF𝒫XXVFfBasX
58 50 54 56 57 syl3anc φFfBasX
59 58 adantr φS<ADPFfBasX
60 fgcl FfBasXXfilGenFFilX
61 59 60 syl φS<ADPXfilGenFFilX
62 ssfg FfBasXFXfilGenF
63 59 62 syl φS<ADPFXfilGenF
64 32 34 readdcld φADP+S
65 64 rehalfcld φADP+S2
66 65 resqcld φADP+S22
67 34 resqcld φS2
68 66 67 resubcld φADP+S22S2
69 68 adantr φS<ADPADP+S22S2
70 34 32 34 ltadd1d φS<ADPS+S<ADP+S
71 34 recnd φS
72 71 2timesd φ2S=S+S
73 72 breq1d φ2S<ADP+SS+S<ADP+S
74 2re 2
75 2pos 0<2
76 74 75 pm3.2i 20<2
77 76 a1i φ20<2
78 ltmuldiv2 SADP+S20<22S<ADP+SS<ADP+S2
79 34 64 77 78 syl3anc φ2S<ADP+SS<ADP+S2
80 70 73 79 3bitr2d φS<ADPS<ADP+S2
81 1 2 3 4 5 6 7 8 9 minveclem1 φRRwR0w
82 81 simp3d φwR0w
83 81 simp1d φR
84 81 simp2d φR
85 0re 0
86 breq1 x=0xw0w
87 86 ralbidv x=0wRxwwR0w
88 87 rspcev 0wR0wxwRxw
89 85 82 88 sylancr φxwRxw
90 85 a1i φ0
91 infregelb RRxwRxw00supR<wR0w
92 83 84 89 90 91 syl31anc φ0supR<wR0w
93 82 92 mpbird φ0supR<
94 93 10 breqtrrdi φ0S
95 metge0 DMetXAXPX0ADP
96 30 7 18 95 syl3anc φ0ADP
97 32 34 96 94 addge0d φ0ADP+S
98 divge0 ADP+S0ADP+S20<20ADP+S2
99 64 97 77 98 syl21anc φ0ADP+S2
100 34 65 94 99 lt2sqd φS<ADP+S2S2<ADP+S22
101 67 66 posdifd φS2<ADP+S220<ADP+S22S2
102 80 100 101 3bitrd φS<ADP0<ADP+S22S2
103 102 biimpa φS<ADP0<ADP+S22S2
104 69 103 elrpd φS<ADPADP+S22S2+
105 14 104 eqeltrid φS<ADPT+
106 5 adantr φS<ADPYLSubSpU
107 rabexg YLSubSpUyY|ADy2S2+TV
108 106 107 syl φS<ADPyY|ADy2S2+TV
109 eqid r+yY|ADy2S2+r=r+yY|ADy2S2+r
110 oveq2 r=TS2+r=S2+T
111 110 breq2d r=TADy2S2+rADy2S2+T
112 111 rabbidv r=TyY|ADy2S2+r=yY|ADy2S2+T
113 109 112 elrnmpt1s T+yY|ADy2S2+TVyY|ADy2S2+Tranr+yY|ADy2S2+r
114 105 108 113 syl2anc φS<ADPyY|ADy2S2+Tranr+yY|ADy2S2+r
115 114 12 eleqtrrdi φS<ADPyY|ADy2S2+TF
116 63 115 sseldd φS<ADPyY|ADy2S2+TXfilGenF
117 ssrab2 yX|ADyADP+S2X
118 117 a1i φS<ADPyX|ADyADP+S2X
119 14 oveq2i S2+T=S2+ADP+S22-S2
120 67 ad2antrr φS<ADPyYS2
121 120 recnd φS<ADPyYS2
122 65 ad2antrr φS<ADPyYADP+S2
123 122 resqcld φS<ADPyYADP+S22
124 123 recnd φS<ADPyYADP+S22
125 121 124 pncan3d φS<ADPyYS2+ADP+S22-S2=ADP+S22
126 119 125 eqtrid φS<ADPyYS2+T=ADP+S22
127 126 breq2d φS<ADPyYADy2S2+TADy2ADP+S22
128 30 ad2antrr φS<ADPyYDMetX
129 7 ad2antrr φS<ADPyYAX
130 44 adantlr φS<ADPyYyX
131 metcl DMetXAXyXADy
132 128 129 130 131 syl3anc φS<ADPyYADy
133 metge0 DMetXAXyX0ADy
134 128 129 130 133 syl3anc φS<ADPyY0ADy
135 99 ad2antrr φS<ADPyY0ADP+S2
136 132 122 134 135 le2sqd φS<ADPyYADyADP+S2ADy2ADP+S22
137 127 136 bitr4d φS<ADPyYADy2S2+TADyADP+S2
138 137 rabbidva φS<ADPyY|ADy2S2+T=yY|ADyADP+S2
139 43 adantr φS<ADPYX
140 rabss2 YXyY|ADyADP+S2yX|ADyADP+S2
141 139 140 syl φS<ADPyY|ADyADP+S2yX|ADyADP+S2
142 138 141 eqsstrd φS<ADPyY|ADy2S2+TyX|ADyADP+S2
143 filss XfilGenFFilXyY|ADy2S2+TXfilGenFyX|ADyADP+S2XyY|ADy2S2+TyX|ADyADP+S2yX|ADyADP+S2XfilGenF
144 61 116 118 142 143 syl13anc φS<ADPyX|ADyADP+S2XfilGenF
145 flimclsi yX|ADyADP+S2XfilGenFJfLimXfilGenFclsJyX|ADyADP+S2
146 144 145 syl φS<ADPJfLimXfilGenFclsJyX|ADyADP+S2
147 15 elin1d φPJfLimXfilGenF
148 147 adantr φS<ADPPJfLimXfilGenF
149 146 148 sseldd φS<ADPPclsJyX|ADyADP+S2
150 ngpxms UNrmGrpU∞MetSp
151 1 11 xmsxmet U∞MetSpD∞MetX
152 22 150 151 3syl φD∞MetX
153 152 adantr φS<ADPD∞MetX
154 7 adantr φS<ADPAX
155 65 adantr φS<ADPADP+S2
156 155 rexrd φS<ADPADP+S2*
157 eqid MetOpenD=MetOpenD
158 eqid yX|ADyADP+S2=yX|ADyADP+S2
159 157 158 blcld D∞MetXAXADP+S2*yX|ADyADP+S2ClsdMetOpenD
160 153 154 156 159 syl3anc φS<ADPyX|ADyADP+S2ClsdMetOpenD
161 8 1 11 xmstopn U∞MetSpJ=MetOpenD
162 22 150 161 3syl φJ=MetOpenD
163 162 adantr φS<ADPJ=MetOpenD
164 163 fveq2d φS<ADPClsdJ=ClsdMetOpenD
165 160 164 eleqtrrd φS<ADPyX|ADyADP+S2ClsdJ
166 cldcls yX|ADyADP+S2ClsdJclsJyX|ADyADP+S2=yX|ADyADP+S2
167 165 166 syl φS<ADPclsJyX|ADyADP+S2=yX|ADyADP+S2
168 149 167 eleqtrd φS<ADPPyX|ADyADP+S2
169 oveq2 y=PADy=ADP
170 169 breq1d y=PADyADP+S2ADPADP+S2
171 170 elrab PyX|ADyADP+S2PXADPADP+S2
172 171 simprbi PyX|ADyADP+S2ADPADP+S2
173 168 172 syl φS<ADPADPADP+S2
174 32 34 32 leadd2d φADPSADP+ADPADP+S
175 32 recnd φADP
176 175 2timesd φ2ADP=ADP+ADP
177 176 breq1d φ2ADPADP+SADP+ADPADP+S
178 lemuldiv2 ADPADP+S20<22ADPADP+SADPADP+S2
179 76 178 mp3an3 ADPADP+S2ADPADP+SADPADP+S2
180 32 64 179 syl2anc φ2ADPADP+SADPADP+S2
181 174 177 180 3bitr2d φADPSADPADP+S2
182 181 biimpar φADPADP+S2ADPS
183 173 182 syldan φS<ADPADPS
184 183 ex φS<ADPADPS
185 49 184 sylbird φ¬ADPSADPS
186 185 pm2.18d φADPS
187 186 adantr φyYADPS
188 83 adantr φyYR
189 89 adantr φyYxwRxw
190 simpr φyYyY
191 fvex NA-˙yV
192 eqid yYNA-˙y=yYNA-˙y
193 192 elrnmpt1 yYNA-˙yVNA-˙yranyYNA-˙y
194 190 191 193 sylancl φyYNA-˙yranyYNA-˙y
195 194 9 eleqtrrdi φyYNA-˙yR
196 infrelb RxwRxwNA-˙yRsupR<NA-˙y
197 188 189 195 196 syl3anc φyYsupR<NA-˙y
198 10 197 eqbrtrid φyYSNA-˙y
199 33 35 48 187 198 letrd φyYADPNA-˙y
200 27 199 eqbrtrrd φyYNA-˙PNA-˙y
201 200 ralrimiva φyYNA-˙PNA-˙y
202 oveq2 x=PA-˙x=A-˙P
203 202 fveq2d x=PNA-˙x=NA-˙P
204 203 breq1d x=PNA-˙xNA-˙yNA-˙PNA-˙y
205 204 ralbidv x=PyYNA-˙xNA-˙yyYNA-˙PNA-˙y
206 205 rspcev PYyYNA-˙PNA-˙yxYyYNA-˙xNA-˙y
207 16 201 206 syl2anc φxYyYNA-˙xNA-˙y