Metamath Proof Explorer


Theorem minveclem5

Description: Lemma for minvec . Discharge the assumptions in minveclem4 . (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
Assertion minveclem5 φxYyYNA-˙xNA-˙y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 oveq2 s=rS2+s=S2+r
13 12 breq2d s=rADz2S2+sADz2S2+r
14 13 rabbidv s=rzY|ADz2S2+s=zY|ADz2S2+r
15 oveq2 z=yADz=ADy
16 15 oveq1d z=yADz2=ADy2
17 16 breq1d z=yADz2S2+rADy2S2+r
18 17 cbvrabv zY|ADz2S2+r=yY|ADy2S2+r
19 14 18 eqtrdi s=rzY|ADz2S2+s=yY|ADy2S2+r
20 19 cbvmptv s+zY|ADz2S2+s=r+yY|ADy2S2+r
21 20 rneqi rans+zY|ADz2S2+s=ranr+yY|ADy2S2+r
22 eqid JfLimXfilGenrans+zY|ADz2S2+s=JfLimXfilGenrans+zY|ADz2S2+s
23 eqid ADJfLimXfilGenrans+zY|ADz2S2+s+S22S2=ADJfLimXfilGenrans+zY|ADz2S2+s+S22S2
24 1 2 3 4 5 6 7 8 9 10 11 21 22 23 minveclem4 φxYyYNA-˙xNA-˙y